首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,特征值是0,1,2.如果α1=(1,2,1)T与α2=(1,-1,1)T分别是λ=0与λ=1的特征向量,则λ=2的特征向量是_____.
设A是3阶实对称矩阵,特征值是0,1,2.如果α1=(1,2,1)T与α2=(1,-1,1)T分别是λ=0与λ=1的特征向量,则λ=2的特征向量是_____.
admin
2018-06-27
29
问题
设A是3阶实对称矩阵,特征值是0,1,2.如果α
1
=(1,2,1)
T
与α
2
=(1,-1,1)
T
分别是λ=0与λ=1的特征向量,则λ=2的特征向量是_____.
选项
答案
t(-1,0,1)
T
,t≠0
解析
设A=2的特征向量是α=(x
1
,x
2
,x
3
),则因实对称矩阵不同特征值的特征向量相互正交,故有
x
3
=t,x
2
=0,x
1
=-t.
所以λ=2的特征向量是t(-1,0,1)
T
,t≠0.
转载请注明原文地址:https://kaotiyun.com/show/oik4777K
0
考研数学二
相关试题推荐
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2).
求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2.
从抛物线y=x2一1的任意一点P(t,t2—1)引抛物线y=x2的两条切线,证明该两条切线与抛物线y=x2所围面积为常数.
曲线在其交点处的切线的夹角θ=_________.
已知累次积分其中a>0为常数,则,可写成
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1+ξ2+ξ3.证明β不是A的特征向量;
设二次型f=2x12+x22+ax32+2x1x2+2bx13+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
随机试题
钛及钛合金在钨极氩弧焊时,如何选择焊接材料?
蔡元培的教育思想有哪些?
A.1%~5%B.50%~70%C.0.5%~5%D.0~1%E.20%~40%正常成人嗜碱性粒细胞所白细胞百分比为
A.雄激素B.长春新碱C.马利兰D.靛玉红E.羟基尿
单因素方差分析的备择假设是
下列情形中,导致仲裁协议无效的有()。
企业因赊销形成的应收账款发生的坏账损失属于非日常经营活动,所以在发生时计入营业外支出中。()
柔性直流输电示范工程由()电力公司承担,建设有南汇风电场换流站和书柔换流站。
Ourape-menforefathershadnoobviousnaturalweaponsinthestruggleforsurvivalintheopen.Theyhadneitherthepowerfult
GettingThin—forGoodA)Justabouteveryonehasbeenonadietatonetimeoranother,andmillionsofushavelearnedthatthe
最新回复
(
0
)