首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3,α5线性表出,说明理由;
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3,α5线性表出,说明理由;
admin
2021-07-27
65
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;
选项
答案
α
4
能由α
1
,α
2
,α
3
,α
5
线性表出.由非齐次线性方程组的通解[2,1,0,1]
T
+k[1,-1,2,0]
T
知α
5
=(k+2)α
1
+(-k+1)α
2
+2kα
3
+α
4
,故α
4
=-(k+2)α
1
-(-k+1)α
2
-2kα
3
+α
5
.
解析
转载请注明原文地址:https://kaotiyun.com/show/oQy4777K
0
考研数学二
相关试题推荐
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求正交变换x=Qy,将f化为标准形.
随机试题
美国射击选手埃蒙斯是赛场上的“倒霉蛋”。在2004年雅典奥运会男子步枪决赛中,他在领先对手3环的情况下将最后一发子弹打在了别人的靶上,失去了即将到手的奖牌。然而,他却得到美丽的捷克姑娘卡特琳娜的安慰,最后赢得了爱情。这真是应了一句俗语:如果赛场失意,那么情
A.丙氨酸-葡萄糖循环B.三羧酸循环C.柠檬酸-丙酮酸循环D.鸟氨酸循环将肌肉中的氨以无毒形式运送至肝脏的是
细胞内液中最多的阴离子是
患者男性,68岁,有心肌梗死病史,因急性心绞痛发作入院,在给予速效救心丸的同时,应考虑给予的止痛药为
A、切牙唇面颈部B、前磨牙颊面颈部C、磨牙颊舌面颈部D、青少年牙的唇颊面颈部E、单个牙唇颊面颈部楔形缺损不发于
关于第三人撤销之诉,下列哪一说法是正确的?(2014年卷三41题,单选)
赵某去饭店就餐之时,在饭店正好碰到自己的弟弟遭一个流氓毒打,赵某立刻前去制止却反遭流氓的进攻,赵某无奈被迫自卫还击。正在这时,便衣民警钱某正好经过现场,未及表明自己的身份即迅速抓住赵某以制止其殴打。赵某以为钱某是流氓的同伙,随即抄起身边的椅子将钱某砸成重伤
关于外墙外保温质量控制的说法,正确的有()。
为提高出口货物在国际市场上的竞争能力,世界各国一般对本国实行()制度。
注册会计师在确定重要性时通常选定一个基准,下列因素中,注册会计师在选择基准时不需要考虑的是()。
最新回复
(
0
)