首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
admin
2018-11-20
30
问题
给定向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
选项
答案
(I)和(Ⅱ)等价用秩来刻画,即 r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,因此(I)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(I)与(Ⅱ)等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/ouW4777K
0
考研数学三
相关试题推荐
设n维行向量α=,A=E一αTα,B=E+2αTα,则AB为().
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
设u=U(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
设矩阵A,B满足A*BA=2BA一8E,且A=,则B=________.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f(c)|≤2a+.
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是________.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明结论。
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
设a为常数,讨论方程ex=ax2的实根个数。
随机试题
弯曲试样焊缝的表面均应用机械方法修整,使之与母材的原始表面平齐。但任何()均不得用机械方法去除。
证券组合是指个人或机构投资者所持有的各种()
A.颊黏膜B.舌下阜C.舌下襞D.舌根E.腭腺舌下腺小管开口于
矩阵时应于特征2的特征向量是()。
学校的中心工作是(),教学的中心环节()
犯罪嫌疑人毛某于2014年4月1日在甲县盗窃人民币500元,4月14日在乙县乘人不备抢夺人民币3000元,4月17日在丙县盗窃人民币3600元,5月4日在丁县故意伤害贾某,导致贾某重伤。四县公安机关分别于案发当日接到报案。8月10日,毛某被丙县公安机关抓获
一位长寿老人生于19世纪90年代,有一年他发现自己年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?
以“六条问事”对地方郡县官吏进行监督的是()。
关于运算符重载,下列表述中正确的是()。
WhenJohnRothasgotintothehydraulics(水力学)business18yearsagoheneverdreamedhe’dseehisworkuponthesilverscreen.
最新回复
(
0
)