首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
admin
2018-11-20
65
问题
给定向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
选项
答案
(I)和(Ⅱ)等价用秩来刻画,即 r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
). [*] 当a+1=0时,r(α
1
,α
2
,α
3
)=2,而r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3,因此(I)与(Ⅱ)不等价. 当a+1≠0时,r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 再来计算r(β
1
,β
2
,β
3
). [*] 则r(β
1
,β
2
,β
3
)=3(与a无关).于是a+1≠0时(I)与(Ⅱ)等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/ouW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
设Q为三阶非零矩阵,且PQ=0,则().
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则().
设A*为A的伴随矩阵,矩阵B满足A*B一A一1+2B,则B=________.
若随机变量X~N(2,σ2),且概率P(2<X<4)=0.3,则概率P(X<0)等于().
设f(x)=|(x—1)(x—2)2(x—3)3|,则导数f’(x)不存在的点的个数是()
如图1—6—1所示,设函数u(x,y)=∫1/xyds∫1/sxf(t,s)dt(x>0,y>0).(1)当f连续时,求u"yx(x,y)和u"xy(x,y).(2)当f具有连续的一阶偏导数时,进一步再求u"xx(x,y)和u"yy(x,y).
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
对不同类型的运算符,优先级的规定是()。
男性,70岁,以往有劳力型心绞痛,长期服用硝酸甘油,病情尚稳定,近1个月来胸痛又发作,部位于胸骨下段,且多发生在午睡时或晚间人睡后,服硝酸甘油无效,起床站立后可缓解。以往有胆石史但从无发作。为了进一步明确诊断应做下列哪项检查
反映问卷的可靠程度的指标是
肝其华在
下列涎腺疾病中有自愈倾向的是
进行施工成本分析时,比较法的应用通常采用的形式是()。
洁净避难区设置的机械加压送风系统一般利用新风空调机组进行加压,火灾时,维持避难区正压,正压值相对于相邻区域为()Pa。
某大型流通企业2008年年销售收入为1亿元,经过董事会商议,打算就2008年净利润进行分配,且还计划在2009年投资建造一新项目。预计该新项目原始投资额为500万元,投资项目寿命期5年,当年投产并产生效益,5年中每年的销售收入为280万元,销货成本为180
新同事小李能力强,有思想,在你面前虚心请教,可是在同事面前却说你思想守旧能力不行等等,你怎么办?
Inmanaginginformationresources,themediummaybethekeytoaneffectivesystem.Themediumisavehicle,atool,oraconta
最新回复
(
0
)