首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excos y)满足 =(4z+excos y)e2x. 若f(0)=0,f’(0)=0,求f(u)的表达式.
设函数f(u)具有二阶连续导数,z=f(excos y)满足 =(4z+excos y)e2x. 若f(0)=0,f’(0)=0,求f(u)的表达式.
admin
2022-09-22
51
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cos y)满足
=(4z+e
x
cos y)e
2x
.
若f(0)=0,f’(0)=0,求f(u)的表达式.
选项
答案
根据复合函数的求偏导法则,由z=f(e
x
cos y),得 [*]=f’(e
x
cos y)·e
x
cos y,[*]=f’(e
x
cos y)·(-e
x
sin y), [*]=f”(e
x
cos y)·e
x
cos y·e
x
cos y+f’(e
x
cos y)·e
x
cos y, [*]=f”(e
x
cos y)·(-e
x
sin y)·(-e
x
sin y)+f’(e
x
cos y)·(-e
x
cos y). 又[*]=(4z+e
x
cos y)e
2x
,则有 f”(e
x
cos y)·e
2x
=[4f(e
x
cos y)+e
x
cos y]e
2x
, 即 f”(u)-4f(u)=u. 齐次方程f”(u)-4f(u)=0对应的特征方程为 λ
2
-4=0. 解得λ=±2.因此对应齐次方程的通解为Y=C
1
e
2u
+C
2
e
-2u
. 由于自由项f(u)=u,则可设特解为y
*
=Au+B,代入原非齐次方程,得 -4(Au+B)=u. 比较系数,可得A=-1/4,B=0,因此y
*
=-[*]u. 则原非齐次方程通解为 y=f(u)Y+y
*
=C
1
e
2u
+C
2
e
-2u
-[*]u. 又f(0)=0,f’(0)=0,可得C
1
=1/16,C
2
=-1/16.因此 f(u)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pDf4777K
0
考研数学二
相关试题推荐
反常积分=___________。
=_______.
sinx令x一t=u,
已知α1,α2,α3,α4是齐次方程组AX=0的基础解系,记β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1.实数t=_______时,β1,β2,β3,β4,也是AX=0的基础解系?
求分别满足下列关系式的f(χ).1)f(χ)=∫0χ(t)dt,其中f(χ)为连续函数;2)f′(χ)+χf′(-χ)=χ
曲线上对应于t=1点处的法线方程为_________.
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;(2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分别是
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O.(1)求正交矩阵Q,使得在正交变换X=QY,下二次型化为标准形.(2)求矩阵A.
设f(x)在x=0的邻域内二阶连续可导,,求曲线y=f(x)在点(0,f(0))处的曲率.
设,那么行列式|A|所有元素的代数余子式之和为.
随机试题
相同颗粒直径的支撑剂排列在一起,圆球度越好,渗透率()。
免疫复合物的形成及沉积是系统性红斑狼疮发病的主要机制。
中心线经被照体的内侧射向外侧的方向称
建设项目业主对工程建设和管理具有较强的主动权和控制权,这属于()的特点。
专利权转让合同须经过()才有效。
阅读下列材料,完成教学设计。材料一:某版本高中物理教材“行星的运动”一节内容。在古代,人们对于天体的运动存在着地心说和日心说两种对立的看法。地心说认为地球是宇宙的的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动。它符合人们的直接经验
调节水资源时间和空间分布的措施是________、________。
某小区居民辛某与余某两人因抢占小区内的公用绿地种植蔬菜发生争执,辛某打了余某两个耳光,余某报警。民警查清事实后,鉴于两人是邻居,决定尽力化解矛盾。民警下列做法恰当的有:
制度的反功能指的是该制度实现了系统的某些功能之后而产生的副作用.诸如破坏该系统的内部协调、稳定关系.造成系统内部冲突.对系统良性运行产生破坏作用等现象。根据上述定义,下列涉及制度的反功能的是:
AwomaninGuangzhouwasbittenbyherpetafterataxistruckthedogatacrossing.The【11】happenedwhenthe30-year-oldwoman
最新回复
(
0
)