首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excos y)满足 =(4z+excos y)e2x. 若f(0)=0,f’(0)=0,求f(u)的表达式.
设函数f(u)具有二阶连续导数,z=f(excos y)满足 =(4z+excos y)e2x. 若f(0)=0,f’(0)=0,求f(u)的表达式.
admin
2022-09-22
27
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cos y)满足
=(4z+e
x
cos y)e
2x
.
若f(0)=0,f’(0)=0,求f(u)的表达式.
选项
答案
根据复合函数的求偏导法则,由z=f(e
x
cos y),得 [*]=f’(e
x
cos y)·e
x
cos y,[*]=f’(e
x
cos y)·(-e
x
sin y), [*]=f”(e
x
cos y)·e
x
cos y·e
x
cos y+f’(e
x
cos y)·e
x
cos y, [*]=f”(e
x
cos y)·(-e
x
sin y)·(-e
x
sin y)+f’(e
x
cos y)·(-e
x
cos y). 又[*]=(4z+e
x
cos y)e
2x
,则有 f”(e
x
cos y)·e
2x
=[4f(e
x
cos y)+e
x
cos y]e
2x
, 即 f”(u)-4f(u)=u. 齐次方程f”(u)-4f(u)=0对应的特征方程为 λ
2
-4=0. 解得λ=±2.因此对应齐次方程的通解为Y=C
1
e
2u
+C
2
e
-2u
. 由于自由项f(u)=u,则可设特解为y
*
=Au+B,代入原非齐次方程,得 -4(Au+B)=u. 比较系数,可得A=-1/4,B=0,因此y
*
=-[*]u. 则原非齐次方程通解为 y=f(u)Y+y
*
=C
1
e
2u
+C
2
e
-2u
-[*]u. 又f(0)=0,f’(0)=0,可得C
1
=1/16,C
2
=-1/16.因此 f(u)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pDf4777K
0
考研数学二
相关试题推荐
微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为______。
设函数则y(n)(0)=______。
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=_______
设函数y=y(χ)由方程ln(χ2+y2)=ysinχ+χ所确定,则=_______.
设f(x)连续,且为常数,则
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0,F(x)=du.求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
计算极限:
设y=y(x)是区间(一π,π)内过的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y’’+y+x=0。求函数y(x)的表达式。
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
设二次型f=xTAx=ax12+2x22一x32+8x1x2+2bx1x3+2cx2x3,矩阵A满足AB=O.其中B=判断矩阵A与B是否合同.
随机试题
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好一个表对象“tTeacher”。试按以下要求完成设计:创建一个查询,查找并显示具有研究生学历的教师的“编号”、“姓名”、“性别”和“系别”四个字段内容,所建查询命名为“qT2”。
为冲突情境中的各方提供了总体的行为指南的是行为意向。
舌淡胖大的病机是
头两侧疼痛,属( )。
下列选项中,说法不正确的是()。
关于城市维护建设税的税率,下列表述正确的有( )。
请认真阅读下列材料,并按要求作答。请根据上述材料完成下列任务:简要说明两数如何比较大小。
教育活动的依据和评判标准是(),它对一切教育工作具有指导意义,是教育的根本性问题。
Whatdoesthelastsentenceofparagraphoneimply?Inthefewgrayyears,theauthor______.
简述结果加重犯的概念和构成特征。(2010年一法专一第16题)
最新回复
(
0
)