首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程。
设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程。
admin
2022-10-13
67
问题
设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程。
选项
答案
由题意知,π∫
1
t
f
2
(x)dx=πt∫
1
t
f(x)dx 两边对t求导得 f
2
(t)=∫
1
t
f(x)dx+tf(t) 代入t=1得f(1)=1,或f(1)=0(舍去),再求导得 2f(t)f’(t)=2f(t)+tf’(t) 记f(t)=y,则[*],因此 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pEC4777K
0
考研数学三
相关试题推荐
设f(x)满足。(Ⅰ)讨论f(x)在(-∞,+∞)是否存在最大值或最小值,若存在则求出;(Ⅱ)求y=f(x)的渐近线方程。
设f(x)在[0,1]有连续导数,且f(0)=0,令,则必有
设(X,Y)的联合密度函数为(I)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当下Y的条件密度函数fY|X(y|x).
设y=f(x)二阶可导,f’(x)≠0,它的函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=_________________________。
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数.而在极坐标系中可写成,求二元函数F(x,y).
判断级数的敛散性.
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3f’(t)dt+2xf(tx)dt+e-x=0,求f’(x).
将函数f(x)=arctan展开成x的幂级数.
求微分方程满足初始条件的特解.
随机试题
下列条形码是按码制分类的有()
与纤维蛋白原水平无关的疾病是
对于公安机关移送审查的胡某故意杀人、盗窃案,县人民检察院受理后,应当如何处理?()
对有抗震要求的钢筋混凝土结构,箍筋弯钩的弯折角度为:[2008年第47题]
竹子清丽俊逸、挺拔凌云的姿质令风流名士们沉醉痴迷,______。世界上最早的一部植物专谱——戴凯之的《竹谱》正是在这种风气下以韵文的形式诞生的。①对竹啸吟终日不辍者亦有之②一时间,闻有好竹即远涉造访而不通名姓者有之③这一时期,文人雅士赋竹、赞竹,为竹
他的工作很模范。
甲公司欠乙公司货款100万元,后甲公司分立为丙、丁、戊三个公司,且丙、丁、戊三个公司约定由丙公司承担原甲公司欠乙公司的债务。对于原甲公司欠乙公司的100万元货款,乙公司()。
有钱聘请昂贵私人律师的被告,其判罪率要明显低于由法庭指定律师的被告。这就是为什么被指控贪污受贿的被告的判罪率,要低于被指控街头犯罪的被告的原因。以下哪项如果为真.最能加强上述断定的说服力?
设A是m阶矩阵.B是n阶矩阵,且|A|=a,|B|=b,C=,则|C|=_______
現在では、電話もある________、ファックスもあります。
最新回复
(
0
)