首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
admin
2022-01-05
70
问题
设f(x
1
,x
2
,x
3
)=x
T
Ax=x
2
1
+x
2
2
+x
2
3
+4xl戈2+4x
1
x
3
+4x
2
x
3
,求正交变换化二次型为标准形,并求当x满足x
T
x=x
2
1
+x
2
2
+x
2
3
=2时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
根据题意,二次型矩阵为[*],则可求得矩阵A的特征值 [*] 因此可得矩阵A的特征值分别为λ
1
=5,λ
2
=λ
3
=-1。 当λ
1
=5时,解方程组5E-A=0可得对应于特征值5的特征向量为ξ
1
=(1,1,1)
T
; 当λ
2
=λ
3
=-1时,解方程组-E-A=0可得对应于特征值-1的特征向量为ξ
2
=(0,-1,1)
T
,ξ
3
=(-2,1,1)
T
,且ξ
2
,ξ
3
正交。 将向量ξ
1
=(1,1,1)
T
,ξ
2
=(0,-1,1)
T
,ξ
3
=(-2,1,1)
T
单位化之后分别为 [*] 构造正交矩阵,得 [*] 令x=Py,则F(x
1
,x
2
,x
2
)=x
T
Ax=5y
2
1
-y
2
2
-y
2
3
。 因为x
T
x=(Py)
T
Py=y
T
(P
T
P)y=y
T
y=y
2
1
+y
2
2
+y
2
3
=2, 所以 f(x
1
,x
2
,x
3
)=5y
2
1
-y
2
2
-y
2
3
=6y
2
1
-2, 由于y
2
1
=2-(y
2
2
+y
2
3
)≤2,即当(x
1
,x
2
,x
3
)≤10,即当[*]时,原二次型最大值为10。
解析
本题主要考查特征向量的求解及特征值的性质。求二次型的标准形基本步骤为:先求出二次型矩阵的特征向量,然后将特征向量单位化,得出正交矩阵。本题计算f(x
1
,x
2
,x
3
)的最大值时可结合平方数非负的特点。
转载请注明原文地址:https://kaotiyun.com/show/pER4777K
0
考研数学三
相关试题推荐
设函数f(x)在|x|<δ内有定义且|f(x)|≤x2,则f(x)在x=0处().
若C,C1,C2,C3是任意常数,则以下函数中可以看作某个二阶微分方程的通解的是
设向量组α,β,γ线性无关,α,β,δ线性相关,则
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
设α1,α2,...,αs均为n维向量,下列结论不正确的是
设D是有界闭区域,下列命题中错误的是
下列说法中正确的是().
(2001年)设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(z)分别由下列两式确定:exy一xy=2和ex=
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
求下列幂级数的收敛域:(Ⅲ)unxn的收敛半径R=3;(只求收敛区间)(Ⅳ)an(x一3)n,其中x=0时收敛,x=6时发散.
随机试题
A、脐疝B、腹股沟斜疝C、股疝D、腹股沟直疝E、切口疝患者男性,46岁,发现右腹股沟肿块2年,术中发现腹壁下动脉在疝囊颈外侧,应考虑为
患者女,44岁,左侧鼻塞,多清涕2年余,不伴鼻痒及打喷嚏,鼻腔检查见鼻中隔明显左偏,左中鼻道少许分泌物。鼻窦CT示:鼻中隔左偏,左侧上颌窦黏膜稍增厚,最适当的治疗是
下列肋骨中可称为假肋的是
孕妇,36岁。妊娠10周,休息时仍感胸闷、气急。查体:脉搏120次/分,呼吸22次/分,心界向左侧扩大,心尖区有Ⅱ级收缩期杂音,肺底有湿啰音,应采取的处理措施是
对工程项目进行全面管理的中心的是()
在民事诉讼程序中,下列情形可以缺席判决的有()。
在销售与收款循环的审计中,丙注册会计师确定的审计目标是“所有销售交易均已登记入账”,针对这一审计目标,下列说法中错误的是()。在生产与存货循环的审计中,丙注册会计师实施监盘程序,无法实现的审计目标是()。
一般资料:求助者,女性,35岁,已婚,工厂普通工人。案例介绍:有一次求助者上班时眼看就要迟到,就急匆匆地往车间里跑,不小心与公司男领导撞了个满怀,同事们顿时都笑起来,还有人吹起口哨,大家事后还总拿他们开玩笑。以后求助者每次去车间都会紧张,觉得同事
水仙(清)李渔水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺予一季之命也。水仙以秣陵①为最,
[*]
最新回复
(
0
)