首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
admin
2022-01-05
57
问题
设f(x
1
,x
2
,x
3
)=x
T
Ax=x
2
1
+x
2
2
+x
2
3
+4xl戈2+4x
1
x
3
+4x
2
x
3
,求正交变换化二次型为标准形,并求当x满足x
T
x=x
2
1
+x
2
2
+x
2
3
=2时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
根据题意,二次型矩阵为[*],则可求得矩阵A的特征值 [*] 因此可得矩阵A的特征值分别为λ
1
=5,λ
2
=λ
3
=-1。 当λ
1
=5时,解方程组5E-A=0可得对应于特征值5的特征向量为ξ
1
=(1,1,1)
T
; 当λ
2
=λ
3
=-1时,解方程组-E-A=0可得对应于特征值-1的特征向量为ξ
2
=(0,-1,1)
T
,ξ
3
=(-2,1,1)
T
,且ξ
2
,ξ
3
正交。 将向量ξ
1
=(1,1,1)
T
,ξ
2
=(0,-1,1)
T
,ξ
3
=(-2,1,1)
T
单位化之后分别为 [*] 构造正交矩阵,得 [*] 令x=Py,则F(x
1
,x
2
,x
2
)=x
T
Ax=5y
2
1
-y
2
2
-y
2
3
。 因为x
T
x=(Py)
T
Py=y
T
(P
T
P)y=y
T
y=y
2
1
+y
2
2
+y
2
3
=2, 所以 f(x
1
,x
2
,x
3
)=5y
2
1
-y
2
2
-y
2
3
=6y
2
1
-2, 由于y
2
1
=2-(y
2
2
+y
2
3
)≤2,即当(x
1
,x
2
,x
3
)≤10,即当[*]时,原二次型最大值为10。
解析
本题主要考查特征向量的求解及特征值的性质。求二次型的标准形基本步骤为:先求出二次型矩阵的特征向量,然后将特征向量单位化,得出正交矩阵。本题计算f(x
1
,x
2
,x
3
)的最大值时可结合平方数非负的特点。
转载请注明原文地址:https://kaotiyun.com/show/pER4777K
0
考研数学三
相关试题推荐
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
下列结论中正确的是
设un=(一1)nln(1+),则级数
(96年)设X1,X2,…,Kn是来自总体X的简单随机样本.已知EX4=ak(k=1,2,3,4),证明当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj.记X=(x1,x2,…,xn)T,把f(x1,x2,…xn)写成矩阵形式,并证明二次型f(X
设随机变量X的密度函数为则下列服从标准正态分布的随机变量是
求不定积分
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<0<1.分别以υ1,υ1表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的最大似然估计量;
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’"(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
毒品的数量以查证属实的走私、贩卖、运输、制造、非法持有毒品的数量计算,并以纯度折算。
在某社区开展的糖尿病普查中,有75%的糖尿病患者的空腹血糖试验阳性,该值所反映的是空腹血糖试验的()。
真空预压法加固软土电基,加固区土体的侧向变形是()。
增加工资项目。
资产负债表提供了以下所有信息,除了:
某企业对两个研发项目方案进行评估,确定了四个关键指标(见下表);然后对每一个方案进行是否满意的定性判断,满意为1,不满意为0;最后根据总评,选择了项目A。该企业采用的评估方法为()。
职工李某接受他人捐赠的一套房屋,该房屋原来建筑成本6万元,目前市场价20万元,李某接受捐赠后又支出装修费4万元,契税税率5%,则李某应交契税( )万元。
《基础教育课程改革纲要(试行)》指出:教师在教学过程中应与学生()
关于2014年上半年A省外资引进状况,能够从上述资料中推出的是:
浓度为70%和55%的两桶酒精分别有15公斤和10公斤,现在从两个桶中取出等量的酒精溶液倒入对方桶中,混合后两桶的浓度恰好相同,则交换的量为()
最新回复
(
0
)