首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=xTAx=x21+x22+x23+4xl戈2+4x1x3+4x2x3,求正交变换化二次型为标准形,并求当x满足xTx=x21+x22+x23=2时,f(x1,x2,x3)的最大值。
admin
2022-01-05
69
问题
设f(x
1
,x
2
,x
3
)=x
T
Ax=x
2
1
+x
2
2
+x
2
3
+4xl戈2+4x
1
x
3
+4x
2
x
3
,求正交变换化二次型为标准形,并求当x满足x
T
x=x
2
1
+x
2
2
+x
2
3
=2时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
根据题意,二次型矩阵为[*],则可求得矩阵A的特征值 [*] 因此可得矩阵A的特征值分别为λ
1
=5,λ
2
=λ
3
=-1。 当λ
1
=5时,解方程组5E-A=0可得对应于特征值5的特征向量为ξ
1
=(1,1,1)
T
; 当λ
2
=λ
3
=-1时,解方程组-E-A=0可得对应于特征值-1的特征向量为ξ
2
=(0,-1,1)
T
,ξ
3
=(-2,1,1)
T
,且ξ
2
,ξ
3
正交。 将向量ξ
1
=(1,1,1)
T
,ξ
2
=(0,-1,1)
T
,ξ
3
=(-2,1,1)
T
单位化之后分别为 [*] 构造正交矩阵,得 [*] 令x=Py,则F(x
1
,x
2
,x
2
)=x
T
Ax=5y
2
1
-y
2
2
-y
2
3
。 因为x
T
x=(Py)
T
Py=y
T
(P
T
P)y=y
T
y=y
2
1
+y
2
2
+y
2
3
=2, 所以 f(x
1
,x
2
,x
3
)=5y
2
1
-y
2
2
-y
2
3
=6y
2
1
-2, 由于y
2
1
=2-(y
2
2
+y
2
3
)≤2,即当(x
1
,x
2
,x
3
)≤10,即当[*]时,原二次型最大值为10。
解析
本题主要考查特征向量的求解及特征值的性质。求二次型的标准形基本步骤为:先求出二次型矩阵的特征向量,然后将特征向量单位化,得出正交矩阵。本题计算f(x
1
,x
2
,x
3
)的最大值时可结合平方数非负的特点。
转载请注明原文地址:https://kaotiyun.com/show/pER4777K
0
考研数学三
相关试题推荐
当A=()时,(0,1,一1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是()
设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间内()
设k>0,则函数f(x)=lnx-+k的零点个数为().
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
若事件A和B同时出现的概率P(AB)=0,则()
(2017年)已知方程在区间(0,1)内有实根,确定常数k的取值范围.
设f(x)在[0.1]上连续可导,f'(1)=0,证明:存在ξ∈[0,1],使得f'(ξ)=4.
试证明函数在区间(0,+∞)内单调增加.
设则I,J,K的大小关系为()
随机试题
腹膜透析的常见并发症是
贺拉斯最重要的美学著作是______。
本-周蛋白尿见于
目眩耳鸣,腰膝酸软,遗精乏力,舌红苔薄,脉弦细数。治法宜用:
干烤法杀灭芽孢的条件是
患者,女,29岁。外感风邪而偏正头痛,恶寒发热,目眩鼻塞,舌苔薄白,脉浮,适合选择
创立大会的职权不包括()
“进口口岸”栏:()。“提运单号”栏:()。
期货公司应当及时将投资者适当性制度实施方案及相关制度报公司所在地中国证监会派出机构备案。()
(复旦大学2011)以下不属于金融抑制内容范围的是()。
最新回复
(
0
)