首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量y的概率密度为f(-y),且X与Y的相关系数为记Z=X+Y. 求EZ,DZ;
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量y的概率密度为f(-y),且X与Y的相关系数为记Z=X+Y. 求EZ,DZ;
admin
2019-02-26
52
问题
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量y的概率密度为f(-y),且X与Y的相关系数为
记Z=X+Y.
求EZ,DZ;
选项
答案
EZ=E(X+Y)=EX+EY=∫
-∞
+∞
xf(x)dx+∫
-∞
+∞
yf(-y)dy [*]∫
-∞
+∞
xf(x)dx+∫
-∞
+∞
(-u)f(u)(-du) =∫
-∞
+∞
xf(x)dx-∫
-∞
+∞
uf(u)du=0, DZ=D(X+Y)=DX+DY+2Cov(X,Y)=DX+DY+[*] 又 DY=E(Y
2
)-(EY)
2
, 其中EY=-EX,E(Y
2
)=∫
-∞
+∞
y
2
(-y)dy=∫
-∞
+∞
(-u)
2
F(u)(-du)=∫
-∞
+∞
u
2
f(u)du=E(x
2
), 所以DY=E(X
2
)-(-EX)
2
=E(X
2
)-(EX)
2
=DX=1, 故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pF04777K
0
考研数学一
相关试题推荐
设随机变量X1,X2,…,Xm-n(m<n)独立同分布,其方差为σ2,令求:(I)D(Y),D(Z);(Ⅱ)ρYZ.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它存进入大气层开始燃烧的前3s内,减少了体积的,
设B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b.(Ⅱ)求BX=0的通解.
设A,B为三阶矩阵,A~B,λ1=一1,λ2=1为矩阵A的两个特征值,又|B-1|=则
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
设X,Y为两个随机变量,若对任意非零常数a,b有D(aX+bY)=D(aX—bY),下列结论正确的是().
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
已知线性方程组有解(1,-1,1,-1)T。(Ⅰ)用导出组的基础解系表示通解;(Ⅱ)写出x=x时的全部解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
随机试题
小儿病危重,其食指可显现为
烧伤患者,高热灼手,汗多气粗,口渴头痛烦躁不安,舌红绛苔黄,脉洪数。其证型是
关于犯罪形态,下列哪种说法是正确的?
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f’(x)>0,f’’(x)>0,则在(-∞,0)内必有()。
如果当前的证券价格不仅反映了历史价格信息和所有公开的价格信息,该市场属于()。
对于长文档,使用键盘快速移动光标至文件首的操作是()。
Whatrhetoricdeviceisusedinthesentence"Manyhandsmakelightwork"?
材料 近日,特拉维夫大学宣布该学校实验室3D打印出了一颗“心脏”,该心脏不仅具有外形,还有细胞、血管和其他支撑结构,甚至可以像心脏一样收缩,但长度只有2.5厘米。该实验团队负责人说:“与过去相比,这项研究成果的突破点在于,这不仅是一个外观打印的心脏,而
某班级53名学生的物理成绩平均分为83分,标准差为7分,测验的信度为0.51。若小叶考试成绩为81分,那么在0.05的显著水平上,其真分数应该介于什么范围?()
RocketRenaissanceTheEarofPrivateSpaceflightIsAbouttoStartBackgroundTwoyearsago,peoplewitnessedthefirstspa
最新回复
(
0
)