首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f(x1,x2,x3)=xTAx经正交变换化为y12+y22-2y32,又A*α=α,其中矩阵A*是矩阵A的伴随矩阵,α=(1,1,1)T,求此二次型的表达式.
已知三元二次型f(x1,x2,x3)=xTAx经正交变换化为y12+y22-2y32,又A*α=α,其中矩阵A*是矩阵A的伴随矩阵,α=(1,1,1)T,求此二次型的表达式.
admin
2020-10-30
49
问题
已知三元二次型f(x
1
,x
2
,x
3
)=x
T
Ax经正交变换化为y
1
2
+y
2
2
-2y
3
2
,又A
*
α=α,其中矩阵A
*
是矩阵A的伴随矩阵,α=(1,1,1)
T
,求此二次型的表达式.
选项
答案
因为二次型f=x
T
Ax经正交变换化为y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值分别为1,1,-2,从而|A|=-2,将A
*
α=α两端左乘矩阵A,得AA
*
α=Aα,由AA
*
=|A|E,得Aα=-2α,故α=(1,1,1)
T
是矩阵A的特征值-2对应的特征向量. 设矩阵A的特征值1对应的特征向量α
1
=(x
1
,x
2
,x
3
)
T
,因为A是对称矩阵,所以α
T
α
1
=x
1
+x
2
+x
3
=0,取α
11
=(-1,-1,2)
T
,α
12
=(1,-1,0)
T
,则α
11
,α
12
是矩阵A的特征值1对应的特征向量,且正交. 将α
11
,α
12
,α单位化,得 [*] 取P=(β
1
,β
2
,β
2
)=[*],则P是正交矩阵,且[*] 所以[*] 故二次型的表达式为f=x
T
Ax=-2x
1
x
2
-2x
1
x
3
-2x
2
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pJx4777K
0
考研数学三
相关试题推荐
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
设A=,B是3阶非零矩阵,且AB=O,则a=________
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
(02年)求极限
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
随机试题
A.记过B.罚款C.降级D.赔偿经济损失E.拘役
A.肝脓肿B.脾肿大C.胃肠胀气D.坏死性肝炎E.胆囊炎肝浊音界缩小见于()
下列所致急性肾衰竭因素中,哪项属于肾前性的【】
I类精密进近灯光系统尽可能延伸到距跑道入口()m处。
简述正例、反例与变式的含义。
下列观点错误的有()。
以下说法哪项错误()。
《每日电讯报》
设z=z(x,y)由z+ez=xy2确定,则dz=_______.
•Writeananswertooneofthequestions2-4inthispart.•Write200-250wordsontheanswerpaper.•Writethequestionnumber
最新回复
(
0
)