首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
admin
2019-03-19
67
问题
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
选项
答案
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,则在[0,2]上必有最大值M和最小值m,于是 m≤f(0)≤M, m≤f(1)≤M, m≤f(2)≤M。 所以 [*] 由介值定理知,至少存在一点c∈[0,2],使 [*] 由f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在ξ∈(c,3)[*](0,3),使f’(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/DeP4777K
0
考研数学三
相关试题推荐
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
设z=z(x,y)是由方程x2+y2—z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠—1。(Ⅰ)求dz;
[*]
设数列{an}满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2)。S(x)是幂级数anxn的和函数。(Ⅰ)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
设z=z(x,y)由方程z+ez=xy2所确定,则dz=________。
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A1一2A2,2A2+3A3,一3A3+2A1|=_____________.
随机试题
A、 B、 C、 A题干问的是如果有问题,问谁。B、C选项表述的是处理方法。A选项中含有咨询的对象,故选A。
转移注意力是矫治()的好方法。
CT的优点不包括
卫生服务组织不包括
男性,38岁,右上臂外伤,局部肿胀,压痛、畸形,反常活动并可触及骨擦感,垂腕且各掌指关节不能背伸,最可能的诊断为
A.疼痛B.发热C.恶心、呕吐D.腹胀E.呃逆外科术后最常见的是
A、大肠埃希菌B、拟杆菌C、铜绿假单胞菌D、溶血性链球菌E、金黄色葡萄球菌导致脓液黄绿色,无臭味,普通细菌培养阳性的病菌是
钟某性情暴躁,常殴打妻子柳某,柳某经常找同村未婚男青年杜某诉苦排遣,日久生情。现柳某起诉离婚,关于钟、柳二人的离婚财产处理事宜,下列哪一选项是正确的?(2016年卷三19题)
甲、乙两人上午8:00分别从A、B出发相向而行,9:00第一次相遇,之后速度均提高了1.5公里/小时,甲到B,乙到A后都立刻沿原路返回,若两人在10:30第二次相遇,则A、B两地的距离为().
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
最新回复
(
0
)