首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[0,1]上连续可导,f(1)=0,∫01xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
admin
2020-03-15
40
问题
设f(x)在[0,1]上连续可导,f(1)=0,∫
0
1
xf’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
选项
答案
由分部积分,得∫
0
1
xf’(x)dx=xf(x)|
0
1
-∫
0
1
f(x)dx=∫
0
1
f(x)dx=2,于是∫
0
1
f(x)dx=一2.由拉格朗日中值定理,得f(x)=f(x)-f(1)=f’(η)(x一1),其中η∈(x,1),f(x)=f’(η)(x一1)两边对x从0到1积分,得∫
0
1
f(x)dx=∫
0
1
f’(η)(x一1)dx=一2.因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上取到最小值m和最大值M,由M(x一1)≤f’(η)(x-1)≤m(x—1)两边对x从0到1积分,得[*]即m≤4≤M,由介值定理,存在ξ∈[0,1],使得f’(ξ)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/pMD4777K
0
考研数学三
相关试题推荐
微分方程y'+ytanx=cosx的通解y=_________。
A为三阶实对称矩阵,A的秩为2,且求矩阵A。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一l,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
曲线y=直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为__________。
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0;
设随机变量X与Y相互独立,X的概率分布为P{X=i}=(i=一l,0,1),Y的概率密度为fY(y)=记Z=X+Y。求P{z≤X=0};
由曲线y=1一(x一1)2及直线y=0围成的图形(如图1—3—1所示)绕y轴旋转一周而成的立体体积V是()
设f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0。证明:对于任意的x∈(一1,0)∪(0,1),存在唯一的0(x)∈(0,1),使f(x)=f(0)+xf'(θ(x)x)成立;
在微分方程的通解中求一个特解y=y(x)(x>0),使得曲线y=y(x)与直线x=1,x=2及y=0所围平面图形绕x轴旋转一周的旋转体体积最小。
随机试题
Tonyistalkingaboutthefriendsandthefood_______interesthim.
高眼压症在测量眼压时充分注意测量误差,眼压测量时的主要误差因素()
如果张某没有将桑塔纳轿车改变用途的情况告知保险公司,以下说法正确的是:()以下说法正确的是:()
下列各项中,会导致企业采取低股利政策的事项有()。
2002年12月,T镇购物中心维修并改善了其停车场的照明,2003年该停车场偷车案和企图偷车案比上一年下降了74%。因为潜在的小偷通常受较好照明条件的威慑,偷车案的下降可归功于这些方面的改善。下列哪一项如果正确,最能支持以上论述?()
公立、免费、没有教士任教,不开宗教课程,招生实行公平竞争的,被拿破仑授予一面写有“为了祖国的科学和荣誉”的旗帜的大学是
e1/2
Ifxispercentmorethany,thenyiswhatpercentlessthanx?
CultureTherearesomanythingsaboutourlivesthatbelongtoculture.I.Language—Languageiswhatpeopleandanimalsuseto
Students’pressuresometimescomesfromtheirparents.Mostparentsarewell【B1】_______,butsomeofthemaren’tveryhelpfulwi
最新回复
(
0
)