首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
admin
2019-01-19
79
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
证明矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b。
选项
答案
由下三角形行列式及分块矩阵行列式的运算,有 |P|=[*]=|A|, 及 |P||Q|=|PQ|=[*]=|A|
2
(b一αA
-1
α)。 因为矩阵A可逆,行列式|A|≠0,故Q=|A|(b一α
T
A
-1
α)。 由此可知,Q可逆的充分必要条件是b一α
T
A
-1
α≠0,即α
T
A
-1
α≠b。
解析
转载请注明原文地址:https://kaotiyun.com/show/KnP4777K
0
考研数学三
相关试题推荐
设二次型f(χ1,χ2,χ3)=χ12+χ22+aχ32+2bχ1χ2-2χ1χ3+2χ2χ3(b<0)通过正交变换化成了标准形f=6y12+3y22-2y12.求a、b的值及所用正交变换的矩阵P.
已知二次型f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及f所对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
总体X~N(2,σ2),从X中抽得简单样本X1,…,X2.试推导σ2的置信度为1-α的置信区间.若样本值为1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
设总体的密度为:f(χ)=其中θ>0,而θ和μ为未知参数.从X中抽得简单样本X1,X2,…,Xn.试求θ和μ的矩估计和最大似然估计.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=_______.
设f′(1)=2.极限存在,则=_______.
当x→0时,f(x)=ln(1+x)一(ax2+bx)与g(x)=xtanx是等价的无穷小,则常数a,b的取值为
设某个系统由5个相同的元件按如图3—1所示的方式联接而成,各元件的工作状态相互独立,而且每个元件的正常工作时间服从参数为λ>0的指数分布,试求系统正常工作时间T的概率分布.
[2008年]设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩(A)<2.
随机试题
一般海拔高度每升高100m,温度大约下降()
下述疾病中,哪一项不会见到心悸伴胸痛
政府对从事建设工程勘察、设计活动的专业技术人员,实行()管理制度。
编制和修订城市总体规划中,居住用地占建设用地的比例应在()之间。
得出某种商品的个人需求曲线时,下列各选项中除了( )外均保持为常数。
注册会计师已获取被审计单位将2012年12月31日已经发生的一笔赊销业务收入,记入2013年1月3日的营业收入账上的充分适当的审计证据,则注册会计师应当界定营业收入的()认定存在重大错报。
汉代政论家王充在《论衡》中说“知屋漏者在宇下,知政失者在草野,知经误者在诸子”这句话蕴含的哲理是()。
根据下列资料,回答下列问题。2009年1~8月,电子信息产业500万元以上投资项目完成固定资产投资2371.4亿元,同比增长15.8%,增速低于去年同期12.3个百分点,低于全国制造业水平11.5个百分点。从行业看,家用视听行业投资48.8亿元
“满意与不满意”是情绪、情感的哪种两极性表现?()
SheStoopstoConquerisOliverGoldsmith’sbest______.
最新回复
(
0
)