首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
admin
2019-01-19
62
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
证明矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b。
选项
答案
由下三角形行列式及分块矩阵行列式的运算,有 |P|=[*]=|A|, 及 |P||Q|=|PQ|=[*]=|A|
2
(b一αA
-1
α)。 因为矩阵A可逆,行列式|A|≠0,故Q=|A|(b一α
T
A
-1
α)。 由此可知,Q可逆的充分必要条件是b一α
T
A
-1
α≠0,即α
T
A
-1
α≠b。
解析
转载请注明原文地址:https://kaotiyun.com/show/KnP4777K
0
考研数学三
相关试题推荐
设矩阵A、B满足关系式AB=A+2B,其中A=,求B.
设实对称矩阵A满足A2=O,证明:A=O.
总体X~N(2,σ2),从X中抽得简单样本X1,…,X2.试推导σ2的置信度为1-α的置信区间.若样本值为1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
设Y=lnX~N(μ,θ2),而X1,….Xn为取自总体X的简单样本,试求EX的最大似然估计.
设总体的密度为:f(χ)=其中θ>0,而θ和μ为未知参数.从X中抽得简单样本X1,X2,…,Xn.试求θ和μ的矩估计和最大似然估计.
当x→0时,f(x)=ln(1+x)一(ax2+bx)与g(x)=xtanx是等价的无穷小,则常数a,b的取值为
某商场销售某种型号计算机,只有10台,其中有3台次品.现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客买4台,以X,Y表示4台计算机中次品数与正品数,求4台中次品数的数学期望,并求协方差cov(X,Y).
检查员逐个地检查某产品,每次花10秒钟检查一个,但也可能有的产品需要再花10秒钟重复检查一次,假设每个产品需要重复检查的概率为0.5,求在8小时内检查员检查的产品个数多于1900个的概率是多少?
设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<)}上服从均匀分布.令(1)写出(X,Y)的概率密度f(x,y);(2)问U与X是否相互独立?并说明理由;(3)求Z=U+X分布函数F(x).
已知A=则秩r(AB+2A)=________
随机试题
下列哪组纠正试验可以诊断血友病
用盈余公积弥补亏损时,应借记“盈余公积”科目,贷记“本年利润”科目。()
统计指标按作用和表现形式不同,可分为()。
Keeppracticingandyou______yourEnglish.
某教师在给学生讲述改革开放成就的同时,还鼓励学生通过“我和爸爸比童年”活动直观地了解改革开放以来社会的发展变化,该教师运用的德育原则是()。
在我国,随着人民生活水平的提高,冬季避寒旅游逐渐流行起来。据研究,一月平均气温一般在10℃到22℃之间的地区适合作冬季避寒旅游的目的地。东北某市花费420万元巨资,从深山引进4200多株大树,因“水土不服”已有400多株死掉,其余的要靠麻绳捆绑、支架支
设f(x)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f″(x)-f(x)=0在(0,1)内有根.
域名ABC.XYZ.COM.CN中主机名是()。
Perhapsmorethananythingelse,scientistsareeagertofindoutifMartianlifeexistedinthepast—orstillexists.【C1】______
TopicAPart-timeJobIHaveDoneForthispart,youareallowed30minutestowriteashortessayentitledAPart-timeJobI
最新回复
(
0
)