首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
admin
2019-01-19
86
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
证明矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b。
选项
答案
由下三角形行列式及分块矩阵行列式的运算,有 |P|=[*]=|A|, 及 |P||Q|=|PQ|=[*]=|A|
2
(b一αA
-1
α)。 因为矩阵A可逆,行列式|A|≠0,故Q=|A|(b一α
T
A
-1
α)。 由此可知,Q可逆的充分必要条件是b一α
T
A
-1
α≠0,即α
T
A
-1
α≠b。
解析
转载请注明原文地址:https://kaotiyun.com/show/KnP4777K
0
考研数学三
相关试题推荐
已知二次型f(χ1,χ2,χ3)=2χ12+3χ22+3χ32+2aχ2χ3(a>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵P.
二次型f(χ1,χ2,χ3)=2χ12+χ22-4χ32-4χ1χ2-2χ2χ3的标准形是【】
已知向量组(Ⅰ):β1=(0,1,-1)T,β2(a,2,1)T,β3=(6,1,0)T与向量组(Ⅱ):α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T具有相同的秩,且β2可由向量组(Ⅱ)线
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.(I)求正交矩阵Q;(Ⅱ)求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
设随机变量X与Y相互独立,且X服从区间(0,1)上的均匀分布,Y服从参数为1的指数分布.(I)求概率P{X+Y≤1);(Ⅱ)令求Z的概率密度fZ(z).
当x→0时,f(x)=ln(1+x)一(ax2+bx)与g(x)=xtanx是等价的无穷小,则常数a,b的取值为
已知函数y=y(x)满足关系式y’=x+y,且y(0)=1.试讨论级数的敛散性.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
已知且AX+X+B+BA=0,求X2006。
随机试题
对于建筑基坑支护采用混凝土灌注桩的构造要求,不正确的是()。
下列犯罪行为中,犯罪主体为特殊主体的是()。
甲公司为某上市公司,2012年甲公司发生如下与投资相关的交易或事项;资料1:甲公司,2012年1月3日,支付4600万元,购入乙公司股票580万股,占乙公司有表决权股份的25%,对乙公司的财务和经营决策具有重大影响,作为长期股权投资核算。每股价格
下列句子中没有语病的一项是()。
张某2011年3月25日被吊销了导游证,根据《中华人民共和国旅游法》第一百零三条规定,以下说法正确的是()。
用于电缆和电机的绝缘材料,要求其介电系数小,以避免电缆和电机工作时产生较大的电容电流。()
关于我国当代文学流派,下列说法错误的是()。
行政领导的执政方式因人而异。有三位乡长,其中有两位乡长只是简单贯彻上级精神,不做调研,不做分析,不考虑实际情况,一味盲目要求本地群众发展种植业、养殖业,最后导致农民受到很大损失。而第三位乡长对上级部门要求本地群众养兔的事进行了仔细的调研和分析,发现邻近许多
下列描述中正确的是
能直接与CPU交换信息的存储器是()。
最新回复
(
0
)