首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X.Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
设二维随机变量(X.Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
admin
2018-08-30
45
问题
设二维随机变量(X.Y)的概率密度为
问X与Y是否独立?|X|与|Y|是否独立?
选项
答案
关于X的边缘密度为f
X
(χ)=∫
-∞
+∞
f(χ,y)dy. 若|χ|≥1,则f
X
(χ)=0; 若|χ|<1,则f
X
(χ)=[*]. 关于Y的边缘密度为 f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 若|y|≥1,则f
Y
(y)=0;若|y|<1,则f
Y
(y)=[*]. [*] 即X与Y不独立。 而(|X|,|Y|)的分布函数为F(χ,y)=P{|X|≤χ,|y|≤y} 当χ≤0或y≤0时,f(χ,y)=0; 当χ≥0,y≥0时,F(χ,y)=P{-χ≤X≤χ,-y≤Y≤y}=∫
-χ
χ
du∫
-y
y
f(u,v)dv. 当χ≥1,y≥1时,F(χ,y)=∫
-1
1
du∫
-1
1
[*]dv=1; 当0<χ≤1,y≥1时,F(χ,y)=∫
-χ
χ
du∫
-1
1
[*]dv=χ; 当χ≥1,0<y≤1时,F(χ,y)=∫
-1
1
du∫
-y
y
[*]dv=y; 当0<χ<1,0<y<1时,F(χ,y)=∫
-χ
χ
du∫
-y
y
[*]dv=χy. [*] 于是,关于|X|的(边缘)分布函数为: [*] 而关于|Y|的(边缘)分布函数为: [*] 可见F
X
(χ).F
Y
(y)=F(χ,y),[*](χ,y)∈R
2
,即|X|与|Y|相互独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/pMg4777K
0
考研数学一
相关试题推荐
设f(x)二阶连续可导,,则().
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
微分方程yy"一2(y’)2=0的通解为___________.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设二维随机变量(X,Y)的联合密度函数为试求:(Ⅰ)数学期望EX,EY;(Ⅱ)方差DX,DY;(Ⅲ)协方差Cov(X,Y),D(5X一3Y).
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y1=eX;(Ⅱ)Y2=-2lnX;(Ⅲ)Y3=;(Ⅳ)Y4=X2.
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0;(Ⅳ)-3xy=xy2.
设A,B均是n阶正定矩阵,判断A+B的正定性.
随机试题
A、脐疝B、腹股沟斜疝C、股疝D、腹股沟直疝E、切口疝患者男性,46岁,发现右腹股沟肿块2年,术中发现腹壁下动脉在疝囊颈外侧,应考虑为
患者女,44岁,左侧鼻塞,多清涕2年余,不伴鼻痒及打喷嚏,鼻腔检查见鼻中隔明显左偏,左中鼻道少许分泌物。鼻窦CT示:鼻中隔左偏,左侧上颌窦黏膜稍增厚,最适当的治疗是
下列肋骨中可称为假肋的是
孕妇,36岁。妊娠10周,休息时仍感胸闷、气急。查体:脉搏120次/分,呼吸22次/分,心界向左侧扩大,心尖区有Ⅱ级收缩期杂音,肺底有湿啰音,应采取的处理措施是
对工程项目进行全面管理的中心的是()
在民事诉讼程序中,下列情形可以缺席判决的有()。
在销售与收款循环的审计中,丙注册会计师确定的审计目标是“所有销售交易均已登记入账”,针对这一审计目标,下列说法中错误的是()。在生产与存货循环的审计中,丙注册会计师实施监盘程序,无法实现的审计目标是()。
一般资料:求助者,女性,35岁,已婚,工厂普通工人。案例介绍:有一次求助者上班时眼看就要迟到,就急匆匆地往车间里跑,不小心与公司男领导撞了个满怀,同事们顿时都笑起来,还有人吹起口哨,大家事后还总拿他们开玩笑。以后求助者每次去车间都会紧张,觉得同事
水仙(清)李渔水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺予一季之命也。水仙以秣陵①为最,
[*]
最新回复
(
0
)