首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX= 0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX= 0是同解方程组.
admin
2018-01-23
58
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=
0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…, ξ
n-r
,是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0 的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在 不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
, ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
, η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这 与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/pNX4777K
0
考研数学三
相关试题推荐
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T,对应λ2=λ3=2的一个特征向量为α2=[-1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
设f(x)在[a,b]上连续,且f(x)>0,又证明:(1)F′(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是().
已知an=x2(1一x)ndx,证明级数an收敛,并求这个级数的和.
若向量组α1=(1,1,λ)T,α2=(1,λ,1)T,α3=(λ,1,1)T线性相关,则λ=_______.
随机试题
提出“天人之分”观点的人是()
以下是关于海上货物运输保险中平安险承保责任范围的描述,其中正确的有
群体凝聚力的基础是()
解决“三农”问题的必要性是什么?
A.目标冲突B.破坏性冲突C.角色冲突D.人际冲突E.过程冲突根据范围划分的冲突类型是
为增加管套的散热速度,机器本身常用的方法不包括
法律之所以规定免责条款无效的原因有( )。
“增值税专用发票”税款抵扣联上记录的进项税额可以在购货单位作为“进项税额”列账。()
甲公司于2010年1月1日开始执行新会计准则,对子公司(丙公司)投资的后续计量由权益法改为成本法。对丙公司的投资2010年年初账面余额为5500万元,其中,投资成本为4000万元,损益调整为1000万元,其他综合收益500万元,未发生减值。变更日该投资的计
DavidCameronhasnoticedthathealthandsafetyregulationsstopschoolstakingchildrenoutonfieldtrips,outdooractivitie
最新回复
(
0
)