首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX= 0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX= 0是同解方程组.
admin
2018-01-23
62
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=
0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…, ξ
n-r
,是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0 的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在 不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
η
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
, ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
, η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这 与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/pNX4777K
0
考研数学三
相关试题推荐
设arctan
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
计算二重积分I=dy.
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T,对应λ2=λ3=2的一个特征向量为α2=[-1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
已知商品的需求量D和供给量S都是价格p的函数:D=D(p)=,S=S(p)=bp,其中a>0,b>0为常数;价格P是时间t的函数,且满足方程=k[D(p)一S(p)](k为正常数).①假设当t=0时,价格为1.试求:(1)需求量等于供
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
已知an=x2(1一x)ndx,证明级数an收敛,并求这个级数的和.
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
设向量组I:α1,α2,…,αs,Ⅱ:β1,β2,…,βr,且向量组I可由向量组Ⅱ线性表示,下列结论正确的是()
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
随机试题
企业发生的一切支出都属于费用。()
格萨尔文化在国内外享有极高的声誉,其特征包括()。
《五代史伶官传序》中的“伶官”是指()
男性,64岁。30年前曾患右上肺结核,经INH、SM和PAS治疗约1年。5年前病灶复发,痰结核杆菌(++),应用2HRZ/4HR治疗,痰菌转阴,病灶吸收满意。近1个月咳嗽、痰血再次就诊。X线示右上肺前段阻塞性炎症,肺CT示前段支气管阻塞,无纵隔淋巴结肿大。
肺炎患者出现感染中毒性休克,此时首要处理是
基坑施工时的安全技术要求有()。
与期货一样,期权通常也是一种标准化的合约。目前,我国在股权分置改革中推出的金融衍生品种有()
1.6月23日傍晚时分,十年来最大一场雨“空袭”京城。雨一直下,越下越大,陶然亭地铁站变成了“水帘洞”,西客站附近的莲花桥下变成了“游泳池”,南二环主路右安门路段断路,在大望路、安华桥这些地方,那些底盘高的SUV(运动型越野车)或许还能涉水缓慢前
A、 B、 C、 D、 C
AUNSecurityCouncildelegationtravelstoSouthAfricaonthefirststopofanine-nationAfricantouraimedat______.
最新回复
(
0
)