首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,ξ1= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A=,ξ1= (1)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (2)对(1)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2020-06-05
31
问题
设A=
,ξ
1
=
(1)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(2)对(1)中任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(1)对于方程组Ax=ξ
1
,对增广矩阵作初等行变换: [*] 因此,所求ξ
2
=(﹣t,t,1-2t)
T
,t为任意常数. 对于方程组A
2
x=ξ
1
的增广矩阵作初等行变换: [*] 故而,所求ξ
3
=([*],u,v)
T
,其中u,v为任意常数. (2)因为 |(ξ
1
,ξ
2
,ξ
3
)|=[*]=﹣1/2≠0 所以对任意的t,u,v恒有|(ξ
1
,ξ
2
,ξ
3
)|≠0,即ξ
3
,ξ
2
,ξ
3
一定线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/pNv4777K
0
考研数学一
相关试题推荐
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的相关系数ρ。
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有()
设A是n阶矩阵,且A的行列式|A|=0,则A().
设A是n(n≥2)阶可逆方阵,A*是A的伴随矩阵,则(A*)*=()
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示.下列命题正确的是
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
随机试题
我知道傅雷的性情刚直,如一团干柴烈火,他因不堪凌辱,一怒而死,这是可以理解的,我和他虽然几乎处处不同,但我还是尊敬他。在那一年,朋友中像傅雷那样的毅然决然不自惜其生命的,还有好几个,我也都一律尊敬。不过,朱梅馥的能同归于尽。这却是我想象不到的,伉俪之情,深
益母草与泽兰的共同功效是()
下列各项中,属于滚动预算优点的有()。
各单位保存的会计档案原则上不得借出,但如有特殊需要,经本单位负责人批准,可以借出。()
(2012年卷一第8题)一件发明专利申请的权利要求如下:“1.一种具有滑动支架的机床,其特征在于包括齿轮箱。2.根据权利要求1的机床,其特征在于将所述滑动支架替换为固定支架。3.包含权利要求2的机床的装配线。”对于上
2008年金融危机爆发后,欧洲各国失业率普遍上升,这种失业属于()。
根据下面材料回答下列问题。下面的三角形表示某省五种产业的数量按地域划分(城区、郊区、乡村)所占百分比。图上的字符表示各种工业,三角形的顶点表示100%,与该顶点相对的基线表示0%。例如,该省所有的加工企业中,约有70%地处城市,5%位于乡村,25%在郊区
下列不是美国独立战争与美国内战的相同点的是()。
同一组学生的数学成绩与语文成绩的关系为()。
private访问属性限制对象的成员,可以在( )中访问。
最新回复
(
0
)