首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知可微函数f(u,v)满足=2(u-v)e-(u+v),且f(u,0)=u2e-u. 求f(u,v)的表达式和极值.
已知可微函数f(u,v)满足=2(u-v)e-(u+v),且f(u,0)=u2e-u. 求f(u,v)的表达式和极值.
admin
2022-09-22
97
问题
已知可微函数f(u,v)满足
=2(u-v)e
-(u+v)
,且f(u,0)=u
2
e
-u
.
求f(u,v)的表达式和极值.
选项
答案
由[*]=2(2x-y)e
-y
对x积分得g(x,y)=∫2(2x-y)e
-y
dx+φ(y)=2e
-y
(x
2
-xy)+φ(y), 由f(u,0)=u
2
e
-u
可得f(x,0)=g(x,x)=φ(x)=x
2
e
-x
, 故g(x,y)=2 e
-y
(x
2
-xy)+y
2
e
-y
. 令x=u,y-x=v,,则f(u,v)=2 e
-(u+v)
[u
2
-u(u+v)]+(u+v)
2
e
-(u+v)
=-2uv e
-(u+v)
+(u+v)
2
e
-(u+v)
=e
-(u+v)
(u
2
+v
2
). 又因为[*]=-e
-(u+v)
(u
2
+v
2
)+e
-(u+v)
2u=-e
-(u+v)
(u
2
+v
2
-2u)
2
=0, [*]=-e
-(u+v)
(u
2
+v
2
)+e
-(u+v)
2v=-e
-(u+v)
(u
2
+v
2
-2v)=0, 解得[*]或者[*] A=f”
uu
=(2-2u)e
-(u+v)
-(2u-u
2
-v
2
)e
-(u+v)
=(2-4u+u
2
+v
2
)e
-(u+v)
, B=f”
uv
=-2v e
-(u+v)
-(2u-u
2
-v
2
)e
-(u+v)
=(-2v-2u+u
2
+v
2
)e
-(u+v)
, C=f”
vv
=(2-2v)e
-(u+v)
-(2v-u
2
-v
2
)e
-(u+v)
=(2-4v+u
2
+v
2
)e
-(u+v)
, 当u=0,v=0时,A=2,B=0,C=2,则AC-B
2
>0,又A>0,故(0,0)是极小值点,极小值f(0,0)=0;当u=1,v=1时,A=0,B=-2e
-2
,C=0,则AC-B
2
<0,故(1,1)不是极值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/pPf4777K
0
考研数学二
相关试题推荐
矩阵的非零特征值是_______.
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=________.
设f(x)为连续函数,且F(x)=,则F’(x)=_____.
设区域D由χ=与y轴围成,则dχdy=_______.
设y=y(χ,z)是由方程eχ+y+z=χ2+y2+z2确定的隐函数,则=_______.
求不定积分
设函数数列{xn}满足,证明存在,并求此极限。
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
求微分方程(y+)dx-xdy=0的满足初始条件y(1)=0的解.
随机试题
二硫腙比色法只能测定茶叶中的铅,不能测定其他重金属。
在巴氏杀菌乳理化指标的规定中,全脂乳的相对密度大于或等于()。
A.肺癌B.乳腺癌C.结肠癌D.皮肤癌E.四肢肉瘤可经椎旁静脉系统转移至骨的肿瘤是
早期缺血性梗死数小时后,MRI示
国内销售环节应缴纳的消费税合计()万元。国内销售环节实现的销项税额合计()万元。
马斯洛的需要层次理论中,属于基本需要的有()。
B公司是增值税一般纳税人,适用的增值税税率为13%。销售商品、材料的价款中均不包含增值税,其成本随销售收入的确认逐笔结转,本年利润采用表结法核算。2020年1~11月实现主营业务收入1700万元,主营业务成本1000万元,其他业务收入300万元,其他业务成
在公文办理中,以下哪些情况下可以使用“通知”?()
( )
下列表述正确的是()。
最新回复
(
0
)