首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知可微函数f(u,v)满足=2(u-v)e-(u+v),且f(u,0)=u2e-u. 求f(u,v)的表达式和极值.
已知可微函数f(u,v)满足=2(u-v)e-(u+v),且f(u,0)=u2e-u. 求f(u,v)的表达式和极值.
admin
2022-09-22
91
问题
已知可微函数f(u,v)满足
=2(u-v)e
-(u+v)
,且f(u,0)=u
2
e
-u
.
求f(u,v)的表达式和极值.
选项
答案
由[*]=2(2x-y)e
-y
对x积分得g(x,y)=∫2(2x-y)e
-y
dx+φ(y)=2e
-y
(x
2
-xy)+φ(y), 由f(u,0)=u
2
e
-u
可得f(x,0)=g(x,x)=φ(x)=x
2
e
-x
, 故g(x,y)=2 e
-y
(x
2
-xy)+y
2
e
-y
. 令x=u,y-x=v,,则f(u,v)=2 e
-(u+v)
[u
2
-u(u+v)]+(u+v)
2
e
-(u+v)
=-2uv e
-(u+v)
+(u+v)
2
e
-(u+v)
=e
-(u+v)
(u
2
+v
2
). 又因为[*]=-e
-(u+v)
(u
2
+v
2
)+e
-(u+v)
2u=-e
-(u+v)
(u
2
+v
2
-2u)
2
=0, [*]=-e
-(u+v)
(u
2
+v
2
)+e
-(u+v)
2v=-e
-(u+v)
(u
2
+v
2
-2v)=0, 解得[*]或者[*] A=f”
uu
=(2-2u)e
-(u+v)
-(2u-u
2
-v
2
)e
-(u+v)
=(2-4u+u
2
+v
2
)e
-(u+v)
, B=f”
uv
=-2v e
-(u+v)
-(2u-u
2
-v
2
)e
-(u+v)
=(-2v-2u+u
2
+v
2
)e
-(u+v)
, C=f”
vv
=(2-2v)e
-(u+v)
-(2v-u
2
-v
2
)e
-(u+v)
=(2-4v+u
2
+v
2
)e
-(u+v)
, 当u=0,v=0时,A=2,B=0,C=2,则AC-B
2
>0,又A>0,故(0,0)是极小值点,极小值f(0,0)=0;当u=1,v=1时,A=0,B=-2e
-2
,C=0,则AC-B
2
<0,故(1,1)不是极值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/pPf4777K
0
考研数学二
相关试题推荐
当0≤θ≤π时,对数螺旋r=eθ的弧长为_________。
交换积分次序=________。
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=_______
设封闭曲线L的极坐标方程为r=cos3θ,则L所围平面图形的面积是______。
已知(x-1)y’’-xy’+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y’’-xy’+y=(x-1)2的解,则此方程的通解是y=_______.
设k为常数,则=_______.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
设无界区域G位于曲线下方,x轴上方,则G绕x轴旋转一周所得空间区域的体积为__________。
“对任意的ε∈(0,1),总存在正整数N,当n≥N时,恒有∣xn一a∣≤2ε”是数列{xn)收敛于a的().
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)