首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
admin
2018-04-15
75
问题
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
选项
答案
令φ(x)一(b一x)
a
f(x),显然φ(x)在[a,b]上连续,在(a,b)内可导, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0, 由φ′(x)=(b一x)
a-1
[(b—x)f′(x)一af(x)]得 (b一ξ)
a-1
[(b一ξ)f′(ξ)一af(ξ)]且(b一ξ)
a-1
≠0,故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pSX4777K
0
考研数学三
相关试题推荐
令[*]却不存在,洛必达法则不成立,原因在于不满足条件(3).
设非齐次线性方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.(Ⅰ)求方程组(α1,α2,α3)x=α5的通解;(Ⅱ)求方程组(α1,α2,α3,α4,α4+α5)x=α1的
设a与b是两个常数,且=b,则()
设非齐次线性方程组AX=B的系数矩阵的秩为r,η1,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-+1(其中k1+…+kn-r+1=1).
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是_________.
微分方程yˊˊ+yˊ+y=的一个特解应具有形式(其中a,b为常数)()
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与z轴的交点),且曲线在点(1,1)处的切线与x轴平行.
曲线y=的斜渐近线为_______。
设随机变量X服从参数为λ的指数分布,令求:随机变量Y的分布函数;
随机试题
肾结核患者常表现为
依据项目管理协会提出的现代项目管理知识体系的分类,下列不属于项目管理内容的是()
可引起血管扩张性肺门增大的疾病是
A.外感风热,麻疹初起,肝经风热,目赤多泪,破伤风证B.外感风热,麻疹初起,热毒疮肿C.外感风热,麻疹初起,湿热泻痢,热病烦渴D.少阳证,肝气郁结,气虚下陷E.外感风热,肝经风热,肝阳上亢,头晕头痛
甲省乙市丙县某施工工地发生较大事故,依据《生产安全事故报告和调查处理条例》(国务院令第493号),该事故报至乙市人民政府安全生产监督管理部门所需的时间最长为()小时。
残疾、孤老人员和烈属的所得免征个人所得税。()
省政府要建设群众信访接待中心。需要了解各地信访工作的落实情况。现在领导派你到各市、县、乡针对各自的信访工作进行调查。你会怎么开展此次调查?
“长调”是我国()族的一种民歌。
-1/2
请在工作簿中选定工作表Sheet1。
最新回复
(
0
)