首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
admin
2017-06-26
91
问题
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
选项
答案
(AB)
T
=B
T
A
T
=BA-AB,故AB也是实对称矩阵.因A正定,有正定阵S,使A=S
2
.于是 S
-1
(AB)S=S
-1
SSBS=SBS=S
T
BS 由B正定,知S
T
BS正定,故S
T
BS的特征值全大于0,故与之相似的矩阵AB的特征值全大于0,因此AB正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/pVH4777K
0
考研数学三
相关试题推荐
证明方程在区间(0,+∞)内有且仅有两个不同实根.
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
设每天生产某种商品g单位时的固定成本为20元,边际成本函数C’(q)=0.4g+2元/件.求成本函数C(g).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
设矩阵,则A3的秩为__________.
设矩阵A=,且|A|=-1.又设A的伴随矩阵A*,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
已知,那么矩阵A=_______.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx标准形,并写出所用正交变换;
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
难度指数
语法意义
MRCP扫描最合理的层厚是
营养不良的并发症包括()
男,40岁。晚饭后上腹不适,继而恶心,突呕鲜血800ml,排柏油样便2次,立即送医院。查体:血压13/9kPa,脉搏102次/分,肝未触及,脾大,肋下2.0cm,有HBsAg(+)史。在输血同时,下列哪项紧急处置最合适
盐酸去氧肾上腺素青霉素V钾
新建筑物价格=()+建造建筑费用+正常利税。
某企业进行股份制改组,根据企业过去的经营情况和未来市场形势,预测其未来5年的收益额分别是13万元、14万元、11万元、12万元和15万元,并假定从第6年开始,以后各年的收益额均为14万元。根据银行利率及企业经营风险情况确定的折现率和资本化率均为10%。并且
水稻开花期最适宜的空气相对湿度是()。
-1,2,7,14,23,()
最新回复
(
0
)