首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f′(ξ)=2∫01f(x)dx.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f′(ξ)=2∫01f(x)dx.
admin
2022-08-19
53
问题
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f′(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f′(x)在区间[0,1]上连续,所以f′(x)在区间[0,1]上取到最大值M和最小值m,对f(x)-f(0)=f′(c)x(其中c介于0与x之间)两边积分得 ∫
0
1
f(x)dx=∫
0
x
f′(c)xdx, 由m≤f′(c)≤M得m∫
0
1
xdx≤∫
0
1
f′(c)xdx≤M∫
0
1
xdx, 即m≤2∫
0
1
f′(c)xdx≤M或m≤2∫
0
1
f(x)dx≤M, 由介值定理,存在ξ∈[0,1],使得f′(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/pVR4777K
0
考研数学三
相关试题推荐
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)在[a,b]上连续,证明:∫abf(x)dx=(b-a)∫01f[a+(b-a)x]dx.
设有幂级数(1)求该幂级数的收敛域;(2)证明:此幂级数满足微分方程y’’-y=-1;(3)求此幂级数的和函数.
设an为发散的正项级数,令S1=a1+a2+…+an(n=1,2,…).证明:收敛.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)有且仅有一个根.
证明:当x>1时,
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得
随机试题
何谓难产?其主要原因有哪些?
灶心土与炮姜均具有的功效有
关于SⅠ、SⅡ、SⅢ图形的描述,错误的是
关于喉癌手术治疗原则,下列说法不正确的是
异位妊娠破裂或流产,最主要的临床表现是
安全及劳动卫生规程未对用人单位提出严格要求的是()。
—Whatareonshowinthemuseum?—Somephotos______bythechildrenofYushu,Qinghai.
我国要建立的宏观调控模式应该是()。
根据以下资料,回答下列问题。2013年第二季度,全国主要监测城市地价总体水平为3226元/平方米。三大重点区域:长江一二角洲、珠江三角洲、环渤海地区综合地价水平分别为4770元/平方米、4552元/平方米、3465元/平方米。分用途看,珠江三角洲地区
Whatdoestheprofessortellthewoman?
最新回复
(
0
)