首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处可导,则|f(x)|在x=a处不可导的充要条件是 ( )
设f(x)在x=a处可导,则|f(x)|在x=a处不可导的充要条件是 ( )
admin
2018-09-20
30
问题
设f(x)在x=a处可导,则|f(x)|在x=a处不可导的充要条件是 ( )
选项
A、f(a)=0,f’(a)=0
B、f(a)=0,f’(a)≠0
C、f(a)≠0,f’(a)=0
D、f(a)≠0,f’(a)≠0
答案
B
解析
若f(a)≠0,则存在x=a的某邻域U,在该邻域内f(x)与f(a)同号,于是推知,若f(a)>0,则|f(x)|=f(x)(x∈U);若f(a)<0,则|f(x)|=-f(x).总之,若f(a)≠0,则|f(x)|在x=a处总可导.若f(a)=0,则
从而知
其中x→a
+
时,取“+”,x→a
-
时,取“一”,所以当f(a)=0时,|f(x)|在x=a处可导的充要条件是|f’(a)|=0,即f’(a)=0.
所以当且仅当f(a)=0,f’(a)≠0时,|f(x)|在x=a处不可导,故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/pVW4777K
0
考研数学三
相关试题推荐
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥∫abf(x)dx.
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<0<1,使得∫0xf(t)dt+∫0xf(t)dt=x[f(θx)一f(一θx)];
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
已知某商品的需求量Q对价格的弹性为pln3,假设该商品的最大需求量为1200,则需求量Q关于价格p的函数关系是().
已知P(A)=0.5,P(B)=0.7,则(Ⅰ)在怎样的条件下,P(AB)取得最大值?最大值是多少?(Ⅱ)在怎样的条件下,P(AB)取得最小值?最小值是多少?
设f(x)连续,f(2)=0,且满足∫0xtf(3x—t)dt=arctan(1+ex),求∫23f(x)dx.
设n是奇数,将1,2,3,…,n2共n2个数,排成一个n阶行列式,使其每行及每列元素的和都相等,证明:该行列式的值是全体元素之和的整数倍.
随机试题
艺术存在一共有三个环节,它们分别是()
HerparentsgiveCindyeverythingsheasksfor,andasaresult,she’svery______.
有关胃癌的转移,错误的描述是
银行业从业人员应该遵守()。
经济基础是()。
物业装饰装修管理流程一般包括的内容有:①申报登记;②备齐资料;③办理开工手续;④签订装修管理协议;⑤施工;⑥验收。上述流程的正确顺序是()
设函数f(x)在(0,+∞)内连续,f(1)=,且对所有x,t∈(0,+∞),满足条件∫0xtf(u)du=t∫1xf(u)du+x∫1tf(u)du求f(x).
Ittookdecadestoprovethatcigarettesmokingcausescancer,heartdisease,andearlydeath.Ittook【C1】______yearstoestabli
下列对VLAN标识的描述中,错误的是()。
Whichofthefollowingreflexivepronouns(反身代词)isusedasanobject?
最新回复
(
0
)