首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
admin
2020-03-16
73
问题
设X
1
,X
2
分别为A的属于不同特征值λ
1
,λ
2
的特征向量.证明:X
1
+X
2
不是A的特征向量.
选项
答案
反证法 不妨设X
1
+X
2
是A的属于特征值λ的特征向量,则有A(X
1
+X
2
)=λ(X
1
+X
2
), 因为AX
1
=λ
1
X
1
,AX
2
=λ
2
X
2
,所以(λ
1
-λ)X
1
+(λ
2
-λ)X
2
=0, 而X
1
,X
2
线性无关,于是λ
1
=λ
2
=λ,矛盾,故X
1
+X
2
不是A的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/pdA4777K
0
考研数学二
相关试题推荐
[2016年]已知f(x)在[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.证明:f(x)在区间(0,)内存在唯一零点.
[2002年]设y=y(x)是二阶常系数线性微分方程y"+py'+qy=e3x满足初始条件.y(0)=y'(0)=0的特解,则当x→0时,函数[ln(1+x2)]/y(x)的极限().
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
(1996年)设f(χ)为连续函数.(1)求初值问题的解y(χ),其中a是正常数;(2)若|f(χ)|≤k(k为常数),证明:当χ≥0时,有|y(χ)|≤(1-e-aχ)
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解.求。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
随机试题
25岁,初产妇,孕34周,因重度胎盘早剥行剖宫产术,术中见子宫表面有紫色瘀斑,尤其胎盘附着处更为显著,子宫出血仍多。妊娠28周以后,无明显原因不规则阴道出血,无痛性,出血量逐渐增多,以下哪项临床表现符合前置胎盘
青春期功能性子宫出血,止血首选药物是
患者,男,40岁。出现胸闷,憋气伴低热,盗汗2周。有肺结核病史10年。胸部X射线片显示右侧胸腔中等量积液。最可能出现的阳性体征是
3月龄小儿按公式计算其身高、头围约是
合格境外机构投资者,简称为()。
某公司于2011年年初购入设备一台,设备价款为1500万元,预计使用3年,预计期末无残值,采用直线法按3年计提折旧(均符合税法规定)。该设备于购入当日投入使用。预计能使公司未来3年的销售收入分别增长1200万元、2000万元和1500万元,经营成本
持票人善意取得伪造的票据,对被伪造人不能行使票据权利。()
求y=3-x的n阶导数.
下列对HiperLAN/2的描述中,错误的是
TheArtofFriendshipA)OneeveningafewyearsagoIfoundmyselfinananxiety.Nothingwasreallywrong—myfamilyandIwere
最新回复
(
0
)