首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明: (1)在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使 (3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明: (1)在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使 (3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
admin
2019-04-17
93
问题
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限
存在.证明:
(1)在(a,b)内f(x)>0;
(2)在(a,b)内存在点ξ,使
(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b
2
一a
2
)=
选项
答案
(1)由[*]存在知,[*]由f(x)在[a,b]上的连续知,f(a)=0.又f’(x)>0,则 f(x)在(a,b)内单调增加,故 f(x)>f(a)=0.x∈(a,b) (2)设F(x)=x
2
.g(x)=∫
a
x
f(t)dt (a≤x≤b) 则g’(x)=f(x)>0.故F(x),g(x)满足柯西中值定理的条件.于是在(a,b)内存在点ξ.使 [*] (3)在[a,ξ]上对f(x)用拉格朗日中值定理得,存在η∈(a.ξ),使 f(ξ)一f(a)=f’(η)(ξ一a) 即 f(ξ)=f’(η)(ξ一a) 代入(2)中的结论得 [*] 故 f’(η)(b
2
一a
2
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/eJV4777K
0
考研数学二
相关试题推荐
设函数f(x,y)可微,,求f(x,y).
设α1,α2……αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示.
已知曲线L:(x≥0),点O(0,0),点A(0,1),设P是L上的动点,S是直线OA与直线AP及曲线L所围成图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
(1997年试题,一)已知在x=0处连续,则a=_________.
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
随机试题
新课程要求教师应是学生学习的促进者。试述促进者这一教师角色的内涵和实现的途径。
初任法官、检察官公开选拔的对象要求是
A.骨组织肿瘤B.软骨组织肿瘤C.纤维组织肿瘤D.骨髓组织肿瘤E.滑膜组织肿瘤Gardner综合征属于
由工商行政管理部门对参与恶意串通的竞买人处最高价()的罚款。
水泥进场时应对其_______、包装或散装仓号等进行检查。()
境外中资企业应当根据生产经营和管理的实际情况,自行判定实际管理机构是否设在中国境内,如果判定符合居民企业条件,应当向主管税务机关书面提出居民身份认定申请并提供的相关资料有()。
位于市区的甲商业企业为增值税一般纳税人,2017年8月份发生以下业务:(1)零售蔬菜罐头、精制茶取得价款245700元;零售杏仁油、葡萄籽油、牡丹籽油,取得价款350300元;零售环氧大豆油、氢化植物油取得价款292500元。(2)本月购进化妆品一批,
甲公司为境内居民企业,2×17年实现利润总额1000万元,当年度发生的部分交易或事项如下:(1)1月1日,甲公司以银行存款260万元取得境内居民企业乙公司30%的股权,从当日起能够对乙公司实施重大影响,当日乙公司可辨认净资产公允价值为1000万元(等于账
对建立良好的程序设计风格,下面描述正确的是______。
Oldpeoplearealwayssayingthattheyoungpeoplearenot【C1】______theywere.Thesamecommentis【C2】______fromgenerationtog
最新回复
(
0
)