首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分dz|x0-y0的定义; (2)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|x0-y0=fx’(
(1)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分dz|x0-y0的定义; (2)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|x0-y0=fx’(
admin
2018-09-25
79
问题
(1)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分dz|
x
0
-y
0
的定义;
(2)证明下述可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则f
x
’(x
0
,y
0
)与f
y
’(x
0
,y
0
)都存在,且dz|
x
0
-y
0
=f
x
’(x
0
,y
0
)△x+f
y
’(x
0
,y
0
)△y;
(3)请举例说明(2)的逆定理不成立.
选项
答案
(1)定义:设z=f(x,y)在点(x
0
,y
0
)的某邻域U内有定义,且(x
0
+△x,y
0
+△y)∈U,则增量 △z=f(x
0
+△x,y
0
+△y)-f(x
0
,y
0
)[*]A△x+B△y+o(ρ), (*) 其中A,B与△x,△y都无关, [*] 则称f(x,y)在点(x
0
,y
0
)处可微, 并称A△x+B△y为z=f(x,y)在点(x
0
,y
0
)处的全微分,记为dz|
(x
0
,y
0
)
=A△x+B△y. (2)设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立,令△y=0,于是 [*] 证明了f
x
’(x
0
,y
0
)与f
y
’(x
0
,y
0
)存在,并且dz|
(x
0
,y
0
)
=f
x
’(x
0
,y
0
)△x+f
y
’(x
0
,y
0
)△y. (3)(2)的逆定理不成立,反例 [*] f
y
’ (0,0)=0都存在,但在点(0,0)处f(x,y)不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/peg4777K
0
考研数学一
相关试题推荐
将下列函数在指定点展成幂级数:(Ⅰ)f(x)=arcsinx,在x=0处;(Ⅱ)f(x)=lnx,在x=1及x=2处;(Ⅲ)f(x)=,在x=1处.
求曲线y=+ln(1+ex)的渐近线方程.
已知a,b,c不全为零,证明方程组只有零解.
求线性方程组的通解,并求满足条件的所有解.
求引力:(Ⅰ)在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).(Ⅱ)设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对P
求[φ(x)-t]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
解下列微分方程:(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解;(Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)+y″+y′+y=0的通解.
计算曲面积分xz2dydz+x2ydzdx+y2zdxdy,其中S是球面x2+y2+z2=a2的上半部分与平面z=0所围成的闭曲面外侧.
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分f(x,y,z)dydz=0.
微分方程y"一3y’+2y=2ex满足=1的特解为__________.
随机试题
下列关于麻醉通气机的描述错误的是()。
关于可逆过程的判断,下列正确的是( )。
汇率对投资建设的影响包括()。
水闸闸墩混凝土的温度裂缝,宜在()的情况下进行修补。
特殊情况下,合同或信用证要求两份证书正本,且难以更改合同或信用证的,经审批同意,检验检疫机构可以签发两份证书正本。( )
某公司进口一批生羊皮,请根据所提供的单据,完成相关的判断题。报检时须提供无木质包装声明。()
甲、乙两单位交换经营性用房,甲单位房屋价值为95万元,乙单位房屋价值为110万元,甲单位支付了差价。当地适用的契税税率为5%,金额均不含增值税,甲单位应缴纳的契税税额为()万元。
中外合资经营企业的()是合资经营企业的法定代表人。
西方一位资产阶级政治家曾说:“民主国家乃是这样的国家,在那里,主权的人民受自己制定的法律领导,自己去做可能做的一切事情。”这段话的观点在于启示我们()。
•ReadthetextbelowaboutaEuropeanrailserviceandthequestionsbelowthepassage.•Foreachquestion(13-18),markonel
最新回复
(
0
)