首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
admin
2019-08-23
62
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
选项
答案
因为f(x)在[a,b]上不恒为常数且f(a)=f(b),所以存在c∈(a,b),使得f(c)≠f(a)=f(b),不妨设f(c)>f(a)=f(b),由微分中值定理,存在ξ∈(a,c),η∈(c,b),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pic4777K
0
考研数学一
相关试题推荐
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
计算曲面积分I=,其中Σ为曲面z=(0≤z≤1)的上侧。
下列曲线积分中,在区域D:x2+y2>0上与路径无关的有()
设有平面闭区域,D={(x,y)|—a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则=()
设连续型随机变量X的分布函数F(x)=求:
连续型随机变量X的分布函数F(x)=则其中的常数a和b为()
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f″(ξ)=g″(ξ)。
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。求D的面积A。
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分与路径无关,并且对任意t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,求Q(x,y)。
随机试题
关格之脾肾阳虚,湿浊内蕴证的治法为
主动脉血流能在心动周期中保持相对稳定,其主要原因是主动脉的
甲非法种植罂粟400株经公安机关行政处罚并强制铲除后,又私自到深山中种植罂粟300株,收获后制成鸦片出售一部分,自己留有250克供吸食之用,甲的行为构成________。
甲公司是一家建设投资公司,业务涵盖市政工程绿化、旅游景点开发等领域。近年来,夏日纳凉休闲项目受到青睐,甲公司计划在位于市郊的A公园开发W峡谷漂流项目(简称“W项目”),目前正在进行项目评价,有关资料如下:(1)甲公司与A公园进行洽谈并初步约定,甲公司一次
《中共中央国务院关于深化体制机制改革加快实施创新驱动发展战略的若干意见》强调,要鼓励各类企业通过股权、期权、分红等激励方式,调动科研人员的创新积极性。实施股权激励方式()。
目前世界上最大型、种类最丰富的一部巨著是:
将【E:\Tools】文件夹设置为共享文件,且允许网络用户更改文件。
有如下程序:#include#includeusingnamespacestd;classMyBag{public:MyBag(stringb
RockmusicwasA(original)B(amixture)ofcountrymusicandC(rhythm)D(and)blues.
Topuniversitieshavebeencalledontopublishlistsof"banned"A-levelsubjectsthatmayhavepreventedthousandsofstatesc
最新回复
(
0
)