首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-23
26
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
4
,所以[*]=n一1,即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/plc4777K
0
考研数学一
相关试题推荐
设函数f(x,y)可微,且f(1,1)=1,fx’(1,1)=a,fy’(1,1)=b。又记φ(x)=f{x,f[x,f(x,x)]},则φ’(1)=__________。
求微分方程xy"+3y’=0的通解。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设向量组α1=(a,0,10)T,α2=(—2,1,5)T,α3=(—1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
向量组α1=(1,—2,0,3)T,α2=(2,—5,—3,6)T,α3=(0,1,3,0)T,α4=(2,—1,4,7)T的一个极大线性无关组是_______。
已知A=有三个线性无关的特征向量,则x=________。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求求Bx=0的通解。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值。
参数a取何值时,线性方程组有无数个解?求其通解.
随机试题
InthevillagesoftheEnglishcountrysidetherearestillpeoplewhorememberthegoodolddayswhennoonebotheredtolockth
巴比妥类药物急性中毒致死的直接原因是
腹泻病人应选择
公民、企事业单位和社会团体实施城乡规划的作用体现为()。
资金成本率的测算方法有()。
根据公司法律制度的姚定,股份有限公司发生下列情形时,应当召开临时股东大会的有()。
某公司适用的所得税税率为25%,2014年有关交易或事项如下:(1)2014年1月初,该公司股东权益总额是20500万元,其中股本为10000万元(股数10000万股,每股1元),资本公积为3000万元,盈余公积为6000万元,未分配利润为1500万元。
《文学改良刍议》
设|A|>0且A*的特征值为一1,—2,2,则a11+a22+a33=________.
Itcanbearguedthatmuchconsumerdissatisfactionwithmarketingstrategiesarisesfromaninabilitytoaimadvertisingatonl
最新回复
(
0
)