首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x)≥f’(x)(x>0),求证:f(x)≡0.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x)≥f’(x)(x>0),求证:f(x)≡0.
admin
2018-11-21
27
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x)≥f’(x)(
x>0),求证:f(x)≡0.
选项
答案
由f’(x)一f(x)≤0,得e
-x
[f’(x)一f(x)]=[e
-x
f(x)]’≤0. 又 f(x)e
-x
|
x=0
=0,则f(x)e
-x
≤f(x)e
-x
|
x=0
=0.进而f(x)≤0(x∈[0,+∞)), 因此 f(x)≡0([*]x∈[0,+∞)).
解析
因f(x)≥0,若能证f(x)≤0,则f(x)≡0.因f(0)=0,若能证f(x)单调不增或对某正函数R(x),R(x)f(x)是单调不增的,这只需证f’(x)≤0或[R(x)f(x)]’≤0.由所给条件及积分因子法的启发,应采取后一种方法.
转载请注明原文地址:https://kaotiyun.com/show/ppg4777K
0
考研数学一
相关试题推荐
已知随机变量X的概率分布P(X=K)=ae-λ,其中λ>0,k=1,2,…,则E(X)为().
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n则四阶行列式|α3,α2,α1,β1+β2|等于().
设幂级数在(-∞,+∞)内收敛,其和函数y(x)满足y’’-2xy’-4y=0,y(0)=0,y’(0)=1。(Ⅰ)证明an=,n=0,1,2,…;(Ⅱ)求y(x)的表达式。
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
设x=2a+b,y=ka+b,其中|a|=1,|b|=2,且a⊥b.若以x和y为邻边的平行四边形面积为6,则k的值为_________.
设C为椭圆+(x2y+x)dy=_______.
随机试题
组织新债券发行的市场是()
把精神,即人的感觉、经验、意志等看作是世界的本原是()
TheancientEgyptiansaresupposed______rocketstothemoon.
与卡环臂固位力大小关系不密切的因素是()
瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中,掘进工作面的局部通风机应采用三专供电,三专是()。
当保证金账户的水平低于________时,结算所会通知经纪人发出追加保证金的通知,要求交易者在规定时间内追加保证金达至________水平。( )
与传统金融工具相比,金融衍生品的特点有()。
全陪、地陪、领队协作共事的基础是()。
“活泼好动、行为敏捷"是指人的兴趣表现出来的特征。()
与其他培训相比,事业单位培训的特点不包括()。
最新回复
(
0
)