首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*X=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*X=0基础解系为( ).
admin
2019-08-27
16
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
X=0基础解系为( ).
选项
A、
B、
C、
D、
答案
C
解析
【思路探索】首先确定A的秩,进而确定A
*
的秩;利用A与A
*
的关系及已知条件即可判别.
由Ax=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
x=0的基础解系中含有3个解向量.
又因为A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
x=0的解.
因为(1,0,2,0)
T
是Ax=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D)选项.
事实上,由α
1
+2α
3
=0,得α
1
=0x
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
x=0的一个基础解系.
故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/psS4777K
0
考研数学一
相关试题推荐
三阶矩阵A的特征值全为零,则必有()
下列关于总体X的统计假设H0属于简单假设的是()
设A是n阶实对称矩阵,将A的第i列和第j列对换得到B,再将B的第i行和第j行对换得到C,则A与C()
设A=有三个线性无关的特征向量,则a=_______.
由曲线y=e2x与该曲线过原点的切线及x轴所围成的平面图形的面积为_________.
设直线l过点M(1,-2,0)且与两条直线l1:垂直,则l的参数方程为_______.
设总体X服从(a,b)上的均匀分布,X1,X2,…,Xn是取自X的简单随机样本,则未知参数a,b的矩估计量为=___________,=___________.
设随机变量X的分布函数为已知P{—1<X<1}=,则a=________,b=________。
设A=,B=P—1AP,其中P为3阶可逆矩阵,则B2004—2A2=________.
设力f=2i-j+2k作用在一质点上,该质点从点M1(1,1,1)沿直线移动到点M2(2,2,2),则此力所做的功为()
随机试题
甲县工商局对汤山纺织厂作山罚款200万元的处罚决定,并且立即执行。汤山纺织厂向市工商局申请复议,市工商局维持了处罚决定,纺织厂随后向法院提起诉讼,一审法院判决维持该处罚决定。汤山纺织厂提出上诉,在二审中才提出损害赔偿的要求,二审法院认定县工商局作出的处
依其控制的内容,经营者控制的可分为【】
酚妥拉明:
撤销权在性质上属于()。
由具有专业知识和经验的工程技术人员对资产的实体各主要部位进行观察,以判断确定被评估建筑物的损耗率的方法称为( )。
阅读《珍珠鸟》教学实录(片段),按照要求答题。师:(看图)在作者眼里,鸟是幸福的,作者也是幸福的。这是多么美好的意境呀!你能给书上的插图起个名字吗?(学生思考片刻,纷纷举手)生:“幸福人家”。生:“友谊地久天长”。
在一种网络游戏中,如果一位玩家在A地拥有一家旅馆,他就必须同时拥有A地和B地。如果他在C花园拥有一家旅馆,他就必须拥有C花园以及A地和B地两者之一。如果他拥有B地,他还拥有C花园。假如该玩家不拥有B地,可以推出下面哪一个结论?
若函数f(x)=(x-1)(x-2)(x-3)(x-4),则f’(x)的零点的个数为()。
America—thegreat"meltingpot"—hasalwaysbeenarichblendofculturaltraditionsfromallovertheworld.ManyAmericanfamil
Holdthereceiverasclosetoyourearaspossibleandtakedowneverywordofthemessage.
最新回复
(
0
)