首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
admin
2019-03-14
55
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
1
α
2
+…+k
s
α
s
=0
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
1
α
2
+…+k
s
α
s
=0
答案
C
解析
可用反证法证明之:必要性:假设有一向量,如α
s
可由α
1
,α
2
,…,α
s一1
线性表出,则α
1
,α
2
,…,α
s
线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出;充分性:假设α
1
,α
2
,…,α
s
线性相关←→至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
,…,α
s
线性无关.(A)对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论.(B)必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[1,0,0]
T
任两个线性无关,但α
1
,α
2
,α
3
线性相关.(D)必要但不充分.如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/pzV4777K
0
考研数学二
相关试题推荐
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记a为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式。
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值。
曲线ρθ=1相应于的一段弧长s=_____________。
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A一1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
已知向量α=(1,k,1)T是A=的伴随矩阵A*的一个特征向量,试求k的值及与α对应的特征值λ.
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0)时,方程组有解β1=(一1,1,1)T,β2=(1,1,一1)T,写出此方程组的通解.
在半径为A的球中内接一正圆锥,试求圆锥的最大体积.
已知f(x)是周期为5的连续函数,它在x=0某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设f(x),φ(x)在点x=0某邻域内连续,且x→0时,f(x)是φ(x)的高阶无穷小,则x→0时,∫0x(t)sintdt是∫0xtφ(t)dt的()无穷小.
设an=A,证明:数列{an}有界.
随机试题
(2013年4月,2010年10月,2009年10月,2009年4月)1956年,陈云在中共八大上提出了________的思想。
Conversationbeginsalmostthemomentwecomeintocontactwithanotherandcontinuesthroughouttheday【C1】______theaidofcel
Yettheseglobaltrendshidestarklydifferentnationalandregionalstories.VittorioColao,thebossofVodafone,whichoperat
为得到高信噪比的图像,应选择
健康是身体上、_______和_______的完好状态,而不仅是没有疾病和虚弱。
下列对疾病定义的描述中,不正确的是
A.罚款B.责令改正C.通报批评D.吊销执业证书E.暂停执业活动医师判断患者为非正常死亡但未按照规定报告,应给予的行政处罚是()
属于物业管理企业运行机制的是()。
在企业中,出于内源性动机的员工着重的是( )。
Thispassagegivesageneraldescriptionofwhyrecessionsoccurandhowtheymakeacountry’seconomyworse.Thevalueofgood
最新回复
(
0
)