首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
admin
2017-08-07
56
问题
已知齐次方程组(I)
解都满足方程x
1
+x
2
+x
3
=0,求a和方程组的通解.
选项
答案
求出(I)的解,代入x
1
+x
2
+x
3
=0,决定a. 用矩阵消元法,设系数矩阵为A, [*] 当a=0时,(I)和方程x
1
+x
2
+x
4
=0同解,以x
2
,x
3
,x
4
为自由未知量求出一个基础解系 η
1
=(一1,1,0,0)
T
,η
2
=(0,0,1,0)
T
,η
3
=(一1,0,0,1)
T
. 其中η
2
,η
3
都不是x
1
+x
2
+x
3
=0的解,因此a=0不合要求. 当a≠0时,继续对B进行初等行变换 [*] 以x
4
为自由未知量,得基础解系η=(a一1,一a,[*],1)
T
.代入x
1
+x
2
+x
3
=0, [*] 求得a=1/2.即当a=1/2时,η适合x
1
+x
2
+x
3
=0,从而(I)的解都满足x
1
+x
2
+x
3
=0.当a≠1/2时,η不满足x
1
+x
2
+x
3
=0. 得a=1/2为所求.此时,方程组的通解为c(一1/2,一1/2,1,1)
T
,c可取任何常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/pzr4777K
0
考研数学一
相关试题推荐
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=E+(1/a)aaT,其中A的逆矩阵为B,则a=________.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T.(Ⅰ)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设A,B为同阶可逆矩阵,则().
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
(2001年试题,十一)设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0
(2008年试题,20)设α,β为三维列向量,矩阵A=ααT+ββT,其中αT为α的转置,βT为β的转置.证明:rA≤2;
(2010年试题,20)设.已知线性方程组Ax=b存在两个不同解求Ax=b的通解.
设二次型xTAx=x12+4x22+x32+2ax3x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求(A一3E)b.
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所同成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒vn体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求水表面上升速度最大
随机试题
根据《法律援助条例》规定,请求支付劳动报酬的,向()的法律援助机构提出申请。
治疗湿热黄疽可选用
痢疾初起治疗当忌
肢端肥大症患者血钙较高时常提示
实验室测定血清总钙的参考方法是
下列关于磁共振图像矩阵的叙述,正确的是
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?()
下面是某求助者MMPI-2的测验结果24项版本的HAMD量表,其因子数量为()。(A)2(B)3(C)5(D)7
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
纯粹从阅读角度看,今天我们的阅读数量是很可观的。我们每天看微博,看新闻客户端,看微信朋友圈,看QQ日志……这最终都能累积为每天的阅读量。碎片化的阅读,确实便利了信息获取,但若是从人文涵养的角度看,碎片化本身意味着不全面,再加上网络阅读的简化,人们由此实现的
最新回复
(
0
)