首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知曲线在直角坐标系中由参数方程给出:x=t+e-t,y=2t+e-2t(t≥0). (Ⅰ) 证明该参数方程确定连续函数y=y(x),x∈[1,+∞). (Ⅱ) 证明y=y(x)在[1,+∞)单调上升且是凸的. (Ⅲ) 求y=
已知曲线在直角坐标系中由参数方程给出:x=t+e-t,y=2t+e-2t(t≥0). (Ⅰ) 证明该参数方程确定连续函数y=y(x),x∈[1,+∞). (Ⅱ) 证明y=y(x)在[1,+∞)单调上升且是凸的. (Ⅲ) 求y=
admin
2017-11-23
40
问题
已知曲线在直角坐标系中由参数方程给出:x=t+e
-t
,y=2t+e
-2t
(t≥0).
(Ⅰ) 证明该参数方程确定连续函数y=y(x),x∈[1,+∞).
(Ⅱ) 证明y=y(x)在[1,+∞)单调上升且是凸的.
(Ⅲ) 求y=y(x)的渐近线.
选项
答案
(Ⅰ)因为x
t
’=1一e
-t
>0(t>0),x
t
’(0)=0=>=t+e
-t
在[0,+∞)单调上升,值域为[*]=[1,+∞). =>x=t+e
-t
在[0,+∞)存在反函数,记为t=t(x),它在[1,+∞)连续(单调连续函数的反函数连续).再由连续的复合函数的连续性=>y=2t(x)+e
-2t(x)
[*]y(x)在[1,+∞)连续. (Ⅱ)由参数式求导法 [*] 于是y=y(x)在[1,+∞)单调上升.又 [*] 因此y=y(x)在[1,+∞)是凸的. (Ⅲ)x→+∞<=>t→+∞ [*] 又因y=y(x)在[1,+∞)连续,所以y=y(x)只有渐近线y=2x.
解析
转载请注明原文地址:https://kaotiyun.com/show/q8r4777K
0
考研数学一
相关试题推荐
设
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
空间曲线x=3t,y=3t2,z=2t3从O(0,0,0)到A(3,3,2)的弧长为__________.
若非零向量a,b满足关系式|a—b|=|a+b|,则必有()
若f(x)为[a,b]上的有界凹函数,则下列结论成立:①λ∈[0,1],f(λx1+(1一λ)x2)≤λf(x1)+(1一λ)f(x2),x1,x2∈[a,b];②③④.f(x)为(a,b)上的连续函数.
求极限;ai>0,且ai≠1,i=1,2,…,n,n≥2.
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).判断U,V是否相互独立?
假设有四张同样的卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有α1,α2,α3.现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
设f(x)在(a,b)连续,x1,x2,…,xn∈(a,b),α1,α2,…,αn为任意n个正数,求证:ξ∈(a,b),使得.
随机试题
安全阀上游的截断阀宜选用全通径球阀。()
会发生早反应的组织是
早期胃癌的定义为()
在以下订立合同过程中的行为,应当承担损害赔偿责任的有()。
岗位工作量调查是计算岗位工作负荷系数、确定岗位职数的重要工作。计算岗位工作负荷系数时不需要考虑的因素是()。
秦汉时期设立的国家音乐机构是()。
《动物园的故事》是()戏剧。
在理论上可以将超媒体技术(Hypermedia)分成三个层次,即【 】、逻辑层和物理层。
吴编辑在一部Word书稿中定义并应用了符合本出版社排版要求的各级标题的标准样式,希望以该标准样式替换掉其他书稿的同名样式,最优的操作方法是()
SolarequipmentSinceabout1800,nearthebeginningoftheIndustrialRevolution,coal,petroleum,andgashavebeenusedata
最新回复
(
0
)