首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
根据行列式的定义,f(x)中含x4和x3的项仅能由(x - a11)×(x - a22)×(x - a33)×(x - a44)产生.因此,x4的系数为1,x3的系数为(- a11)+(- a22)+(- a33)+(- a44)=- (a
根据行列式的定义,f(x)中含x4和x3的项仅能由(x - a11)×(x - a22)×(x - a33)×(x - a44)产生.因此,x4的系数为1,x3的系数为(- a11)+(- a22)+(- a33)+(- a44)=- (a
admin
2020-03-16
47
问题
选项
答案
根据行列式的定义,f(x)中含x
4
和x
3
的项仅能由(x - a
11
)×(x - a
22
)×(x - a
33
)×(x - a
44
)产生.因此,x
4
的系数为1,x
3
的系数为(- a
11
)+(- a
22
)+(- a
33
)+(- a
44
)=- (a
解析
转载请注明原文地址:https://kaotiyun.com/show/qE84777K
0
考研数学二
相关试题推荐
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretanξ)f’(ξ)=一1.
求u=x2+y2+z2在=1上的最小值.
设f(χ)=χ2sinχ,求f(n)(0).
求不定积分
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.求方程组AX=b的通解.
[2011年]已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分I=xyf″xy(x,y)dxdy.
曲线L:的斜渐近线为____.
随机试题
Somepsychologists(心理学家)maintainthatmentalactssuchasthinkingarenotperformedinthebrainalone,butthatone’smuscles
她无论有多累总是设法按时完成工作。
不属于糖尿病诊断标准
A.凝固B.凝集C.聚集D.叠连E.粘连血液由溶胶状态变为凝胶状态称为
丹毒的致病菌为
曲线y=sinx在[-π,π]上与x轴所围成的图形的面积为()。
注册会计师的下列做法中,正确的是()。
有的人觉得公务员工作轻松,但参加工作以后又觉得压力大,不能适应。你觉得你会怎么应对未来工作中的压力?
相关系数与回归系数的数学关系是()
Todoanythingyoulikeyouhavetosee______withyourmanager.
最新回复
(
0
)