首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件. (1)二元函数的极限f(x,y)存在; (2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界; (3)f(x,y0)=f(x0,y0),f(x0,y)
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件. (1)二元函数的极限f(x,y)存在; (2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界; (3)f(x,y0)=f(x0,y0),f(x0,y)
admin
2019-05-11
69
问题
试分析下列各个结论是函数z=f(x,y)在点P
0
(x
0
,y
0
)处可微的充分条件还是必要条件.
(1)二元函数的极限
f(x,y)存在;
(2)二元函数z=f(x,y)在点(x
0
,y
0
)的某个邻域内有界;
(3)
f(x,y
0
)=f(x
0
,y
0
),
f(x
0
,y)=f(x
0
,y
0
);
(4)F(x)=f(x,y
0
)在点x
0
处可微,G(y)=f(x
0
,y)在点y
0
处可微;
(5)
[f
x
’(x,y
0
)一f
x
’(x
0
,y
0
)]=0,
[f
y
’(x
0
,y)一f
y
’(x
0
,y
0
)]=0;
(6)
选项
答案
结论(1)~(4)中每一个分别都是z=f(x,y)在点P
0
(x
0
,y
0
)处可微的必要条件,而非充分条件.而结论(6)是其充分非必要条件.因z=f(x,y)在点P
0
(x
0
,y
0
)处可微,故z=f(x,y)在点P
0
(x
0
,y
0
)处连续,即[*] f(x
0
,y
0
),则极限[*]必存在,于是z=f(x,y)在点P
0
(x
0
,y
0
)某邻域有界. 结论(3)表示一元函数F(x)=f(x,y
0
)在x
0
处连续,G(y)=f(x
0
,y)在y
0
处连续,它是二元函数z=f(x,y)在点P
0
(x
0
,y
0
)处连续的必要条件,而非充分条件.而z=f(x,y)在点P
0
(x
0
,y
0
)处连续又是其可微的必要条件,且非充分条件. 只要在z=f(x,y)在P
0
(x
0
,y
0
)的全微分定义 △z=A△x+B△y+o(ρ),[*] 中取特殊情况,分别令△y=0与△x=0即证得结论(4). 结论(5)的[*]表示偏导函数f
x
’(x,y)在y=y
0
时的一元函数 f
x
’(x,y
0
)在x
0
处连续,它仅是二元偏导函数f
x
’(x,y)在P
0
(x
0
,y
0
)处连续的一个必要条件,对[*]有类似的结果.而z=f(x,y)在P
0
(x
0
,y
0
)处可微又是f
x
’(x,y),f
y
’(x,y)在P
0
(x
0
,y
0
)处连续的另一个必要条件,所以结论(5)既不是充分条件又是不是必要条件. 结论(6)的等价形式是 △z=f(x,y)一f(x
0
,y
0
)=o(ρ),ρ=[*] 它是相应全微分定义中A=0,B=0的情形,则结论(6)是其可微的充分非必要条件.
解析
转载请注明原文地址:https://kaotiyun.com/show/qNV4777K
0
考研数学二
相关试题推荐
证明:,其中a>0为常数.
求函数y=的间断点,并进行分类.
设f(χ)在(0,+∞)内连续且单调减少.证明:∫1n+1f(χ)dχ≤f(k)≤f(1)+∫1nf(χ)dχ.
设f(χ)在[0,1]上连续,f(0)=0,∫01f(χ)dχ=0.证明:存在ξ∈(0,1),使得∫0ξ=f(χ)dχ=ξf(ξ).
设f(χ)为[-2,2]上连续的偶函数,且f(χ)>0,F(χ)=∫-22|χ-t|f(t)dt,求F(χ)在[-2,2]上的最小值点.
求极限
求微分方程χy′+(1-χ)y=e2χ(χ>0)的满足y(χ)=1的特解.
利用洛必达法则求下列极限:
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程.
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
随机试题
试述四种内容型激励理论。
越鞠丸中行气解郁的药是()
企业有下列哪些行为之一的,应当对相关资产进行评估?()
实际准备金的计算方法通常包括()。
风景名胜区必须具备什么条件?
小学生的思想品德教育重点在于培养他们形成良好的______和行为习惯。
课堂教学评价的发展性原则主要是指()。
下列关于监察对象对监察机关作出的涉及本人的处理决定不服,采取的救济措施,说法不正确的是:
在Applet的生命周期中,下列哪个方法使Applet成为激活状态?()
Psychologiststakecontrastiveviewsofhowexternalrewards,from【C1】______praisetocoldcash,affectmotivationandcreativit
最新回复
(
0
)