首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3的负惯性指数为1,则a的取值范围是_______.
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3的负惯性指数为1,则a的取值范围是_______.
admin
2018-07-26
90
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
-x
2
2
+2ax
1
x
3
+4x
2
x
3
的负惯性指数为1,则a的取值范围是_______.
选项
答案
[-2,2].
解析
1 对f配方,可得
f=(x
1
+ax
3
)
2
-(x
2
-2x
3
)
2
+(4-a
2
)x
3
3
于是f可经可逆线性变换
化成标准形
f=z
1
2
-z
2
2
+(4-a
2
)z
3
2
若4-a
2
<0,则f的负惯性指数为2,不合题意;
若4-a
2
≥0,则f的负惯性指数为1.
因此,当且仅当4-a
2
≥0,即|a|≤2时,f的负惯性指数为1.
2 f的矩阵为
A的特征多项式为
=λ
3
-(5+a
2
)λ+4-a
2
,
设A的特征值为λ
1
,λ
2
,λ
3
,则f经正交变换可化成标准形
f=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
λ
1
,λ
2
,λ
3
中为负的个数即f的负惯性指数,且由特征值的性质知
λ
1
λ
2
λ
3
=det(A)=4-a
2
.
由于f既可取到正值、又可取到负值,所以λ
1
,λ
2
,λ
3
中至少有一个为正的,也至少有一个为负的.
λ
1
λ
2
λ
3
的符号只有下列3种可能:
(1)λ
1
λ
2
λ
3
=0,此时有λ
3
=0,
1,2
λ=±
,即f的正、负惯性指数都为1,符号题意.
(2)λ
1
λ
2
λ
3
<0,此时λ
1
,λ
2
,λ
3
中有“一个为负的,2个为正的(不可能3个都为负,否则与f可取到正值矛盾),符号题意.
(3)λ
1
λ
2
λ
3
>0,此时λ
1
,λ
2
,λ
3
中3个都为正的,或者2个为负的,1个为正的,都不符号题意.
综上可知,当且仅当λ
1
λ
2
λ
3
=4-a
2
≤0,即|a|=2时,符号题意.
转载请注明原文地址:https://kaotiyun.com/show/qTW4777K
0
考研数学三
相关试题推荐
随机地向半圆(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比,用X表示原点到该点连线与x轴正方向的夹角,求X的概率密度.
已知随机变量Y~N(μ,σ2),且方程x2+x+Y=0有实根的概率为,则未知参数μ=_______.
已知=0,其中a,b是常数,则
设D是由曲线(a>0,b>0)与x轴,y轴围成的区域,求
一条自动生产线连续生产n件产品不出故障的概率为,n=0,1,2,….假设产品的优质品率为p(0<P<1).如果各件产品是否为优质品相互独立.(Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;(Ⅱ)若已知在某两次故
重复独立掷两个均匀的骰子,则两个骰子的点数之和为4的结果出现在它们点数之和为7的结果之前的概率为______.
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
已知A,B,C都是行列式值为2的3阶矩阵,则D==_______.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ
随机试题
Ispentlastsummervolunteeringatahospital.Itwasagiftto【C1】______somanyamazingpeopleandI’dliketoshareoneoft
原发性再生障碍性贫血血液检查不可能出现
滤线器滤线栅板的栅密度一般为
在煅法中,可改变药物的化学成分,产生治疗作用的是
某一市区电网日供电量为5568万千瓦时,日最大负荷为290万千瓦,则该电网日负荷率为:
设备制造阶段进度管理监理工作细则包括( )。
简述实用主义教育学的主要观点。
阅读以下某网上作业提交与管理系统的技术说明,根据要求回答问题1~问题3。[说明]某学校建立了一个网上作业提交与管理系统,基本功能描述如下。(1)账号和密码。任课老师用账号和密码登录系统后,提交所有选修学生的名单。系统自动为每个选修学
Fromthehealthpointofviewwearelivinginamarvelousage.Weareimmunizedfrombirthagainstmanyofthemostdangerousd
WhathappenedattheUnitedNations?Howdidthecriticslikethenewplay?(1)_____aneventtakesplace,newspapersa
最新回复
(
0
)