首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=x0的某邻域U内有定义,在x=x0的去心邻域内可导,则下述命题: ①f’(x0)存在,则f’(x)也必存在. ②设f’(x)存在,则f’(x0)也必存在. ③设f’(x0)不存在,则’(x0)也必不存在. ④设f’(x)不存在,则’(x0)
设f(x)在x=x0的某邻域U内有定义,在x=x0的去心邻域内可导,则下述命题: ①f’(x0)存在,则f’(x)也必存在. ②设f’(x)存在,则f’(x0)也必存在. ③设f’(x0)不存在,则’(x0)也必不存在. ④设f’(x)不存在,则’(x0)
admin
2019-07-28
81
问题
设f(x)在x=x
0
的某邻域U内有定义,在x=x
0
的去心邻域
内可导,则下述命题:
①f
’
(x
0
)存在,则
f
’
(x)也必存在.
②设
f
’
(x)存在,则f
’
(x
0
)也必存在.
③设f
’
(x
0
)不存在,则
’
(x
0
)也必不存在.
④设
f
’
(x)不存在,则
’
(x
0
)也必不存在.
其中
不正确
的个数为 ( )
选项
A、1.
B、2.
C、3.
D、4.
答案
D
解析
举例说明所述命题没有一个是正确的.
①的反例:设
所以①不正确,
②的反例:设
则当x≠0时,f
’
(x)=0,
f
’
(x)=(存在),而f(x)在x=0处不连续,所以f
”
(0)不存在.所以
②不正确.
③的反例,可取与②同一反例,所以③不正确.
④的反例,可取与①同一反例,所以④不正确.
所以选(D).
转载请注明原文地址:https://kaotiyun.com/show/qWN4777K
0
考研数学二
相关试题推荐
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2,则B=________.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
由[*]得[*]
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
求数列极限xn,其中xn=
设f’(x)存在,求极限,其中a,b为非零常数.
(Ⅰ)若xn<yn(n>N),且存在极限xn=A,yn=B,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又c∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若使得当0<|x-a|<δ时有界.
随机试题
下图为Word2010窗口截图,完成以下题目。用户右击____处(填写序号),在弹出的快捷菜单中单击“功能区最小化”命令,可将Word2010窗口的功能区最小化。
苏子降气汤中配伍当归和肉桂的意义是
麻黄与桂枝的区别中,下列哪一项是错误的
8度抗震设计的钢筋混凝土结构,框架柱的混凝土强度等级不宜超过()。
施工临时工程是为辅助主体工程施工所必须修建的生产和生活用临时性工程。其由()、其他施工临时工程组成。
违反法律、行政法规或者中国证监会有关规定,情节严重的,可以对有关责任人员采取()年的证券市场禁入措施。
安装工程保险的保险金额是按()确定的。
2010年1月2日,甲公司以货币资金取得乙公司30%的股权,初始投资成本为2000万元,投资时乙公司各项可辨认资产、负债的公允价值与其账面价值相同,可辨认净资产公允价值及账面价值的总额均为7000万元。甲公司取得投资后即派人参与乙公司生产经营决策,但无法对
根据2010年第六次全国人口普查数据显示,东部地区中北京市常住人口为1961.24万人,上海市常住人口为2301.91万人;中部地区中河南省常住人口为9402.36万人,山西省常住人口为3571.21万人;西部地区中重庆市常住人口为2884.62万人,四川
Drivingthroughsnowstormonicyroadsforlongdistancesisamostnerve-rackingexperience.Itisaparadoxthatthesnow,com
最新回复
(
0
)