首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
admin
2020-09-25
191
问题
设n元线性方程组Ax=b,其中
(1)证明行列式|A|=(n+1)a
n
.
(2)当a为何值时,该方程组有唯一解?求x
1
.
(3)当a为何值时,该方程组有无穷多解?求通解.
选项
答案
(1)记D
n
=|A|.用数学归纳法证明D
n
=(n+1)a
n
. ①当n=1时,D
1
=2a,结论成立. ②当n=2时,D
2
=[*]=3a
2
,结论成立. 假设结论对小于n的情况成立,将D
n
按第一行展开,得 [*] 根据假设D
n-1
=na
n-1
,D
n-2
=(n一1)a
n-2
,可得 D
n
=2a.na
n-1
一a
2
(n一1)a
n-2
=(n+1)a
n
.所以结论对任意n成立. (2)当a≠0时,系数行列式D
n
=|A|≠0,方程组有唯一解,由克拉默法则,将D
n
第一列换成常数列b,得 [*] (3)当a=0时,方程组为[*] 由于[*]=R(A)=n一1<n,所以方程组有无穷多解,其通解为(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/qWx4777K
0
考研数学三
相关试题推荐
方程组有非零解,则k=________。
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
随机试题
男性,24岁,右下腹疼痛、腹泻半年就诊。为痉挛性痛,餐后加重,大便糊状,无黏液脓血,每天2~4次。体格检查右下腹压痛,无包块,有肛裂。行结肠镜检查入至回盲部末端见肠黏膜纵行溃疡,病变呈节段性,病变肠段之间黏膜外观正常,应考虑最可能的诊断是
Cullen征是指
慢性肾小球肾炎首选的降压药物为
案情:建设单位在李某的门前设有消防设施,市公安消防支队对其消防设施抽查后作出《建设工程消防验收备案结果通知》。李某认为消防栓的设置和建设影响了其生活而消防支队却验收合格,严重侵犯了其合法权益,遂向法院起诉,请求依法撤销市公安消防支队批准在其门前设置的消防栓
某家庭以4000元/m2的价格,购买了一套建筑面积为120m2的住宅,银行为其提供了15年期的住房抵押贷款,该贷款的年利率为6%,抵押贷款价值比率为70%。如该家庭在按月等额还款5年后,于第6年初一次提前偿还了贷款本金8万元,问从第6年开始的抵押贷款月还款
工程量清单计价模式下,在计算直接工程费时,以( )为基数完成计价。
证券经营机构涉嫌严重违法违规或严重亏损,在被证监会或国家有关部门调查期间,可以暂停其证券自营业务资格,暂停时间最长不超过(),并根据调查结论作相应处理。
下列关于烟叶税的说法中,错误的是()。
下列说法中,包含着创新思想的是()。
(97年)设总体X的概率密度为其中θ>一1是未知参数.X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.
最新回复
(
0
)