首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 行列式==( ).
[2014年] 行列式==( ).
admin
2019-05-10
45
问题
[2014年] 行列式=
=( ).
选项
A、(ad—bc)
2
B、一(ad一bc)
2
C、a
2
d
2
一b
2
c
2
D、b
2
c
2
一a
2
d
2
答案
B
解析
待计算的行列式为数字型行列式,且元素排列有一定规律,应利用行列式性质将其变形化为能直接使用非零元素仅在主、次对角线上的2n阶或2n一1阶行列式计算:
=(a
1
a
2n
一b
1
b
2n
)(a
2
a
2n-1
—b
2
b
2n-1
)…(a
n
a
n+1
—b
n
b
n+1
),
=a
n
(a
n-1
a
n+1
一b
n-1
b
n+1
)(a
n-2
a
n+2
一b
n-2
b
n+2
)…(a
2n-1
a
1
一b
2n-1
一b
1
).
解一 令
.
此为非零元素仅在主、次对角线上的行列式,由式(2.1.1.5),即得
∣A∣=一(ad—bc)(ad—bc)=一(ad—bc)
2
.仅(B)入选.
解二 将∣A∣按第1行展开,然后可利用式(2.1.1.6)直接写出结果:
∣A∣=(一a)
=(一a)d(ad一bc)+bc(ad—bc)
=一(ad—bc)(ad—bc)=一(ad—bc)
2
.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/qjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
随机试题
已知三角形三边长分别为3、15、X。若X为正整数,则这样的三角形有多少?()
肺痨咳嗽用滋养肺肾之阴的方法,属于
坡屋顶的屋面排水方式与平屋顶基本相同,主要分为()等几种形式。
(2007)下列哪种灯的显色性为最佳?
在深圳证券交易所,结算登记费是成交金额的()。
工资及三项经费用应调整应纳税所得额()万元。业务招待费、业务宣传费应调整应纳税所得额()万元
在冰箱产业中,无氟冰箱似乎正成为主流产品,厂家纷纷上马无氟冰箱生产线,消费者对无氟冰箱也很青睐,其主要原因是()。
“如果集体的成员把集体的前景看作个人的前景,集体愈大,个人也就愈美,愈高尚。”下列选项中正确理解这句话含义的是()。
Change,ortheabilityto【C1】______oneselftoachangingenvironmentisessential【C2】______evolution.Thefarmerwhoselandisr
Conversation:Thefollowingaretwobusinessletters.Afterreadingthem,youshouldgivebriefanswerstothe5questions(No.
最新回复
(
0
)