首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 行列式==( ).
[2014年] 行列式==( ).
admin
2019-05-10
54
问题
[2014年] 行列式=
=( ).
选项
A、(ad—bc)
2
B、一(ad一bc)
2
C、a
2
d
2
一b
2
c
2
D、b
2
c
2
一a
2
d
2
答案
B
解析
待计算的行列式为数字型行列式,且元素排列有一定规律,应利用行列式性质将其变形化为能直接使用非零元素仅在主、次对角线上的2n阶或2n一1阶行列式计算:
=(a
1
a
2n
一b
1
b
2n
)(a
2
a
2n-1
—b
2
b
2n-1
)…(a
n
a
n+1
—b
n
b
n+1
),
=a
n
(a
n-1
a
n+1
一b
n-1
b
n+1
)(a
n-2
a
n+2
一b
n-2
b
n+2
)…(a
2n-1
a
1
一b
2n-1
一b
1
).
解一 令
.
此为非零元素仅在主、次对角线上的行列式,由式(2.1.1.5),即得
∣A∣=一(ad—bc)(ad—bc)=一(ad—bc)
2
.仅(B)入选.
解二 将∣A∣按第1行展开,然后可利用式(2.1.1.6)直接写出结果:
∣A∣=(一a)
=(一a)d(ad一bc)+bc(ad—bc)
=一(ad—bc)(ad—bc)=一(ad—bc)
2
.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/qjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,且f〞(χ)>0,对任意的χ1,χ2∈[a,b]及0<λ<1,证明:f[λχ1+(1-λ)χ2]≤λf(χ1)+(1-λ)f(χ2).
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
随机试题
若f(—x)=f(x),在区间(0,+∞)内,f′(x)>0,f″(x)>0,则f(x)在区间(一∞,0)内()
It’sanannualback-to-schoolroutine.Onemorningyouwavegoodbye,andthat【21】eveningyou’reburningthemid-nightoilinsym
A、氯丙嗪B、丙咪嗪C、碳酸锂D、地西泮E、五氟利多抗焦虑药是
患者,男,54岁。尿少10年。查体:血压20/13.3kPa(150/100mmHg),尿蛋白(++),尿红细胞6—10个/HP,尿白细胞2~3个/HP,尿比重1.015,临床诊断为慢性肾小球肾炎,血BUN31mmol/L,Cr407μmol/L,
根据《证券法》规定,下列关于证券承销的说法,不正确的是()。
伍德罗.威尔逊在任时通过的反垄断的法令是()。
A、 B、 C、 D、 A
下列______ 设备可以隔离ARP广播帧。
在考生文件夹下打开文档WORD.DOCX,按照要求完成下列操作并以该文件名(WORD.DOCX)保存文档。某高校为了使学生更好地进行职场定位和职业准备、提高就业能力,该校学工处将于2013年4月29日(星期五)19:30—21:30在校国际会议中
ListentoSarahtalkingtoafriendaboutasportscentre.Whatistheproblemwiththedifferentthingsatthesportscentre?F
最新回复
(
0
)