首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,且AX=0有基础解系α1=[1,1,2,1]T,α2=[0,一3,1,0]T; BX=0有基础解系β1=[1,3,0,2]T,β2=[1,2,一1,a]T. (1)求矩阵A; (2)若AX=0和BX=0有非
已知A,B均是2×4矩阵,且AX=0有基础解系α1=[1,1,2,1]T,α2=[0,一3,1,0]T; BX=0有基础解系β1=[1,3,0,2]T,β2=[1,2,一1,a]T. (1)求矩阵A; (2)若AX=0和BX=0有非
admin
2018-09-20
51
问题
已知A,B均是2×4矩阵,且AX=0有基础解系α
1
=[1,1,2,1]
T
,α
2
=[0,一3,1,0]
T
;
BX=0有基础解系β
1
=[1,3,0,2]
T
,β
2
=[1,2,一1,a]
T
.
(1)求矩阵A;
(2)若AX=0和BX=0有非零公共解,求参数a的值及公共解.
选项
答案
(1)记C=[α
1
,α
2
],则有AC=A[α
1
,α
2
]=O,得C
T
A
T
=O,即A
T
的列向量(即A的行向量)是C
T
X=0的解向量. [*] 解得C
T
X=0的基础解系为ξ
1
=[1,0,0,一1]
T
,ξ
2
=[-7,1,3,0]
T
. 故[*] (2)若AX=0和BX=0有非零公共解,则非零公共解既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出,设公共解为 η=x
1
α
1
+x
2
α
2
=x
3
β
1
+x
4
β
2
.于是 x
1
α
1
+x
2
α
2
-x
3
β
1
一x
4
β
4
=0. (*) 对[α
1
,α
2
,一β
1
,一β
2
]作初等行变换,有 [*] 当a=3时,方程组(*)有非零解,即k[一1,1,一2,1]
T
.此时AX=0和BX=0的非零公共解,为 η=L
1
(一α
1
+α
2
)=L
1
[一1,一4,一1,一1]
T
=L[1,4,1,1]
T
, 其中L是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/qkW4777K
0
考研数学三
相关试题推荐
设向量组α1=线性相关,但任意两个向量线性无关,求参数t.
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为________.
设三阶矩阵A的特征值为λ1=一1,λ2=0,λ3=1,则下列结论不正确的是().
设随机变量X与Y的相关系数为,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E(X+Y)2=________.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:求A的特征值与特征向量.
设方程组α3=为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一1的特征向量.(1)求A;(2)求|A*+3E|.
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx2(1一cost)dt,则当x—0时,f(x)是g(x)的().
设f’(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1一t)x2]≤tf(x1)+(1一t)f(x2).证明:
设I=xydxdy,其中D由曲线y=y=一x和y=所围成,则I的值为().
设问a,b,c为何值时,矩阵方程AX=B有解,有解时求出全部解.
随机试题
在移动通信中传送数字信令时,为了便于收端解码,要求数字信令按一定格式编排。()
不见复关,________。
AveryrapidincreaseinthenumberofshipssailingbetweenAmericanandEuropeanportsbeganalmostimmediatelyaftertheend
下列对农民集体所有的土地表述正确的是()。
某商业中心地上共4层、地下共1层,建筑高度20m,耐火等级一级,每层层高均为5m,每层建筑面积均为10000m2,按国家有关工程建设消防技术标准配置了自动喷水灭火系统、火灾自动报警系统等消防设施及器材。某歌舞厅位于该商业中心的地下一层至地上四层,每层歌舞厅
根据票据法律制度的规定,下列各项中,不属于单位签发支票必须具备的条件是()。
甲是某地远近有名的养马专业户,乙需要买四匹马,来找甲商议。甲乙通过协商,商定四匹马共5000元。但乙不放心,甲对乙说:“你不放心可以先把马牵回去试用,如果一个月内觉得可以,你就买下来。如果觉得不满意,就把马给我牵回来,没事的。”乙很高兴,就将四匹马牵走了,
Healthimpliesmorethanphysicalfitness.Italsoimpliesmentalandemotionalwell-being.Anangry,frustrated,emotionally【C1
根据詹姆斯马丁的理论,以______的规划、设计和实现为主体的企业数据环境建设,是信息工程的核心。A.应用数据库B.物理数据库C.主题数据库D.数据仓库
TypesofLanguageTestingI.Placement—sortnewstudentsinto【T1】______【T1】______—testthestudent’s【T2】______ratherthansp
最新回复
(
0
)