首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
admin
2019-06-28
69
问题
设热水瓶内热水温度为T,室内温度为T
0
,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T
0
成正比.又设T
0
=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
选项
答案
温度变化的速率即[*],牛顿冷却定律给出了这个变化率满足的条件,写出来它就是温度T所满足的微分方程:[*]=-k(T-T
0
),其中k为比例常数,且k>0.其通解为T=T
0
+Ce
-kt
.再由题设:T
0
=20,T(0)=100,T(24)=50,所以[*](ln8-ln3).这样,温度T=20+[*].若T=95,则t=[*]=1.58,即在1.58小时后热水的温度降为95℃.
解析
转载请注明原文地址:https://kaotiyun.com/show/qpV4777K
0
考研数学二
相关试题推荐
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设z=xf(x+y)+g(xy,x2+y2),其中f,g分别阶连续可导和二阶连续可偏导,则=__________
当x=______时,函数y=x.2x取得极小值.
若函数z=2x2+2y2+3xy+ax+by+c在点(一2,3)处取得极小值一3,则常数a、b、c之积abc=___________.
1/2这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和Z的联合分布.P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
某闸门的性状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少米?
已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l。若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______。
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
随机试题
物流管理的最终目标是()。
抑制胃液分泌的重要因素
下列各项中,不属于太阴病证的临床表现的是
擅自添加着色剂、防腐剂等敷料的必须是列入国家药品标准的品种
A.右归丸合理中丸B.左归饮加制首乌、龟板C.左归丸去牛膝,合二至丸D.保阴煎加沙参、麦冬、五味子、阿胶E.右归丸去肉桂、当归,加黄芪、覆盆子、赤石脂
关于施工合同的义务下列说法正确的是()。
下列各项个人所得,应纳个人所得税的是()。
阅读下面材料,回答下面题。现有600名初中一年级学生身高的次数分布的资料,学生的最低身高是139cm,最高身高是171cm,学生身高的数据被分成了11组,组间距为3cm,现知道每组学生的人数,已有所有学生身高的平均数。欲考查这些学生的身高是否
设随机变量X服从正态分布N(μ,1),已知P{x≤3}=0.975,则P{X≤一0.92}=__________.
Howusefularetheviewsofpublicschoolstudentsabouttheirteachers?Quiteuseful,accordingtopreliminaryresultsrele
最新回复
(
0
)