首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
admin
2019-09-27
29
问题
设α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
s
为两个n维向量组,且r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
s
)=r,则( ).
选项
A、两个向量组等价
B、r(α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
s
)=r
C、若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
s
线性表示,则两向量组等价
D、两向量组构成的矩阵等价
答案
C
解析
不妨设向量组α
1
,α
2
,…,α
m
的极大线性无关组为α
1
,α
2
,…,α
r
,向量组β
1
,β
2
,…,β
s
的极大线性无关组为β
1
,β
2
,…,β
r
,若α
1
,α
2
,…,α
m
可由β
1
,β
2
,…,β
s
线性表示,则α
1
,α
2
,…,α
r
也可由β
1
,β
2
,…,β
r
线性表示,若β
1
,β
2
,…,β
r
不可由α
1
,α
2
,…,α
r
线性表示,则β
1
,β
2
,…,β
s
也不可由α
1
,α
2
,…,α
m
线性表示,所以两向量组的秩不等,矛盾,选C.
转载请注明原文地址:https://kaotiyun.com/show/r1S4777K
0
考研数学一
相关试题推荐
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设二次型f(x1,x2,x3)﹦xTAx,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中B﹦(I)用正交变换化二次型为标准形,并求所做的正交变换;(Ⅱ)求该二次型的具体表达式。
设随机变量X和Y分分别服从,已知P{X﹦0,Y﹦0}﹦。(I)求(X,Y)的联合分布律;(Ⅱ)求X和Y的相关系数;(Ⅲ)求P{X﹦1|X2﹢Y2﹦1}。
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn均是来自正态总体X与Y的两个相互独立的简单随机样本,统计量服从Y﹦t(n)分布,则m与n应满足的关系为()
设二次型f(x1,x2,x3)﹦xTAx﹦ax12﹢6x22﹢3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值。(I)求a的值;(Ⅱ)试用正交变换将二次型f化为标准形,并写出所用的正交变换。
对任意的x,y有将f(x,y)变换成g(u,v),试求满足﹦u2﹢v2的常数a,b。
设A,B均为n阶矩阵,A可逆,且A与B相似,则下列命题中正确的个数为()①AB与BA相似;②A2与B2相似;③AT与BT相似;④A-1与B-1相似。
已知R3的两个基分别为求由基α1,α2,α3到基β1,β2,β3的过渡矩阵P.
设总体X~N(μ1,σ2),Y~N(μ2,σ2).从总体X,Y中独立地抽取两个容量为m,n的样本X1,…,Xm和Y1,YN记样本均值分别为是σ2的无偏估计.求:Z的方:差DZ.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
随机试题
()是指金融资产根据历史成本所反映的账面价值。
治疗心阴虚,心火旺的心烦失眠宜选治疗热病伤阴之虚风内动宜选
在编制控制性详细规划的过程中,容积率可根据需要制定上限和下限。容积率的下限保证土地开发的效益,防止无效益和低效益开发造成的土地浪费。
我国已初步形成()的住房金融体系。
设L为连接(0,2)和(1,0)的直线段,则对弧长的曲线积分∫1(x2+y2)ds=
下列关于操作风险的说法,不正确的是()。
仲裁裁决被人民法院裁定撤销或不予执行的,当事人就同一纠纷,不能再以重新达成仲裁协议申请仲裁或向人民法院起诉。()
全国人大常委会《关于(中华人民共和国刑法)有关信用卡规定的解释》中规定:“刑法规定的‘信用卡’,是指由商业银行或者其他金融机构发行的具有消费支付、信用贷款、转账结算、存取现金等全部功能或者部分功能的电子支付卡。”这一规定属于()(2015年一法专一
Whoisthespeaker?
Somepsychologists(心理学家)maintainthatmentalactssuchasthinkingarenotperformedinthebrainalone,butthatone’smuscles
最新回复
(
0
)