首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2019-01-14
58
问题
设A是秩为n—1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
—α
2
)
答案
D
解析
因为A是秩为n—1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
—α
2
必为方程组Ax=0的一个非零解,即α
1
—α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
—α
2
),故选D。
此题中其他选项不一定正确。因为通解中必有任意常数,所以A选项不正确;若α
1
=0,则B选项不正确;若α
1
= —α
2
≠0,则α
1
+α
2
=0,此时C选项不正确。
转载请注明原文地址:https://kaotiyun.com/show/GyM4777K
0
考研数学一
相关试题推荐
求下列曲线积分:(Ⅱ)I=∫Ly2ds,其中平面曲线L为旋轮线(0≤t≤2π)的一拱;(Ⅲ)I=∫L(x+y)ds,其中L为双纽线r2=a2cos2θ(极坐标方程)的右面一瓣.
计算累次积分:I=∫01dx∫1x+1ydy+∫12dx∫xx+1ydy+∫23dx∫x3ydy.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
α1,α2,α3,β线性无关,而α1,α2,α3,γ线性相关,则
(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
设随机变量X与Y相互独立同分布,且X的概率分布为记U=max(X,Y),V=min(X,Y),试求:(I)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
曲线y=arctan渐近线的条数是
求下列曲面积分I=(x2一y2)dzdx+(y2一z2)dzdx+(z2一x2)dxdy,S是的上侧.
随机试题
下列关于恶性肿瘤特点的叙述,正确的有()
膀胱结石的典型症状是
下列属于主观资料的是()
将经营决策划分为经营战略决策和经营战术决策,这是根据经营决策的()不同划分的。
各国划分货币层次的标准是()。
与酵母菌相比,大肠杆菌细胞中不具有的结构是()。
北半球的信风带气流的流向是()。
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
如果用户希望在网上聊天,可以使用Internet提供的()。
Manyartistslateinthelastcenturywereinsearchofameanstoexpresstheirindividuality.Moderndancewasoneoftheways
最新回复
(
0
)