首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量α1,α2,α3线性无关,证明:3α1+2α2,α2-α3,4α3-5α1线性无关.
已知n维向量α1,α2,α3线性无关,证明:3α1+2α2,α2-α3,4α3-5α1线性无关.
admin
2020-06-05
28
问题
已知n维向量α
1
,α
2
,α
3
线性无关,证明:3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
线性无关.
选项
答案
方法一 如果k
1
(3α
1
+2α
2
)+k
2
(α
2
-α
3
)+k
3
(4α
3
-5α
1
)=0,那么 (3k
1
-5k
3
)α
1
+(2k
1
+k
2
)α
2
+(﹣k
2
+4k
3
)α
3
=0 注意到α
1
,α
2
,α
3
线性无关,于是3k
1
-5k
2
=0,2k
1
+k
2
=0,﹣k
2
+4k
3
=0.由克拉默法则得 k
1
=0,k
2
=0,k
3
=0.故向量组3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
线性无关. 方法二 由于 (3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
)=(α
1
,α
2
,α
3
)[*] 又因为矩阵[*]可逆,所以R(β
1
,β
2
,β
3
)=R(α
1
,α
2
,α
3
)=3,从而3α
1
+2α
2
,α
2
-α
3
,4α
3
-5α
1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/r8v4777K
0
考研数学一
相关试题推荐
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA—1)—1=()
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
n阶实对称矩阵A正定的充分必要条件是()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设齐次线性方程组的系数矩阵为A,且存在3阶方阵B≠O,使AB=O,则
设n阶方阵A的秩为r,且r<n,则在A的n个行向量中
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
直线1:之间的关系是()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
面神经分布的范围有
对处于创业期和拓展期的新兴公司进行资金融通的业务属于投资银行的()
关于君子人格理想的论说,主要集中在先秦儒家典籍之中。这些儒家典籍成为经典之后,历代学人不仅反复习诵,而且不断进行注疏阐释,在泱泱典籍中,形成了“经学”。先秦儒家关于君子的论说也就不断被传承和弘扬。由于儒家思想是中国历代主流意识形态的核心内容,所以经学几乎贯
恶性葡萄胎与绒毛膜癌的主要不同为
护士为卧床患者洗发时,以下操作不妥的是
根据《文物保护法》的规定,市级文物保护单位由()核定公布。
文明礼貌的核心是()。
物流中心的信息化建设一般以信息技术为基础,在一定的深度和广度上利用计算机技术、网络技术和数据库技术,控制和集成化管理企业物流运营活动中的所有信息,实现企业内外部信息的共享和有效利用,以提高企业的经济效益和市场竞争能力。()
对关系S和关系R进行集合运算,结果中既包含关系S中的所有元组也包含关系R中的所有元组,这样的集合运算称为()。
Genetics,thestudyofgenes,isgainingincreasingimportance.Genescan【B1】______manythings,fromwhomwelookliketowhat
最新回复
(
0
)