首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,且A2-2A-8E=0.证明:r(4E-A)+r(2E+A)=n.
设A为n阶矩阵,且A2-2A-8E=0.证明:r(4E-A)+r(2E+A)=n.
admin
2019-03-21
28
问题
设A为n阶矩阵,且A
2
-2A-8E=0.证明:r(4E-A)+r(2E+A)=n.
选项
答案
由A
2
-2A-8E=O得(4E-A)(2E+A)=O,根据矩阵秩的性质得r(4E-A)+r(2E+A)≤n.又r(4E-A)+r(2E+A)≥r[(4E-A)+(2E+A)]=r(6E)=n,所以有r(4E-A)+r(2E+A)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/rLV4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设曲线y=y(x)上点(x,y)处的切线垂直于此点与原点的连线,求曲线y=y(x)的方程.
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
求曲线的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
求曲线y=3-|χ2-1|与χ轴围成的封闭图形绕y=3旋转所得的旋转体的体积.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
随机试题
水疝湿热下注型宜选用何方治疗
悬空作业应有牢靠的立足处,并必须视具体情况配置()
行政处罚遵循()的原则。
下列选项中,不属于专利及专有技术使用费的是( )。
2016年M公司获得1500万元净利润,其中300万元用于支付股利。2016年企业经营正常,在过去5年中,净利润增长率一直保持在10%。然而,预计2017年净利润将达到1800万元,2017年公司预期将有1200万元的投资机会。预计M公司未来无法维持201
《大气污染防治法》规定,被淘汰的设备,()。
新生派出所位于老城区,治安环境复杂。为了确保安全,派出所组织两支巡逻组,不间断地对辖区进行巡逻。一组是车巡组,共3人,开一辆警车,负责白天主干道的巡逻;二组是步巡组,共3人,负责夜间支街背巷的巡逻。该所一周警情记录如下:为了控制近期盗窃案件的高发态势
科学研究发现,植物对触摸作出反应是因为它们认为自己正在遭受风的打击,因此“觉得”必须提高强度防止风的破坏。每天只要对植物的茎进行几秒钟的抚摸和敲击就可使植物枝干的密度加强。在植物被触摸不到30分钟后,植物的基因便可生成使其体内钙含量提高的蛋白质。钙的增加相
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,条件(1)和(2
一个完整的计算机系统应该包括()。
最新回复
(
0
)