首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
admin
2018-08-23
60
问题
求f(x,y)=x+xy一x
2
一y
2
在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
选项
答案
这是闭区域上求最值的问题.由于函数f(x,y)=x+xy—x
2
一y
2
在闭区域D上连续,所以一定存在最大值和最小值. 首先求f(x,y)=35-+xy—x
2
一y
2
在闭区域D内部的极值: 解方程组[*]得区域D内部唯一的驻点为[*]由 g(x,y)=(f"
xy
)
2
一f"
xx
f"
yy
=一3 得f(x,y)=x+xy一x
2
一y
2
在闭区域D内部的极大值[*] 再求f(x,y)在闭区域D边界上的最大值与最小值: 这是条件极值问题,边界直线方程即为约束条件. 在x轴上约束条件为y=0(0≤x≤1),于是拉格朗日函数为 F(x,y,λ)=x+xy一x
2
一y
2
+λy, 解方程组[*]得可能的极值点[*]其函数值为[*] 在下边界的端点(0,0),(1,0)处f(0,0)=0,f(1,0)=0,所以下边界的最大值为[*]最小值为0。 同理可求出: 在上边界上的最大值为一2,最小值为一4; 在左边界上的最大值为0,最小值为一4; 在右边界上的最大值为[*]最小值为一2. 比较以上各值,可知函数f(x,y)=x+xy一x
2
一y
2
在闭区域D上的最大值为[*]最小值为一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/rPj4777K
0
考研数学二
相关试题推荐
设当实数a为何值时,方程组Ax=β有无穷多组解,并求其通解.
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
设函数f(x)在x0处可导,且f(x0)≠0,求
已知点A与B的直角坐标分别为(1,0,0)与(0,1,1),线段AB绕z轴旋转一周所成的旋转曲面为S,求由S及平面z=0,z=1所围成的立体体积.
设有直线试问L1与L2是否相交?若相交,求出交点;若不相交,求出两直线间的距离.
设A,B为同阶方阵,举一个二阶方阵的例子说明(1)的逆命题不成立;
设函数fi(x)(i=1,2)具有二阶连续导数,且fi(x0)
D是圆周x2+y2=Rx所围成的闭区域,则=___________.
设f(x)在[a,b]上有连续的导数,证明
随机试题
A.甲氧苄啶(TMP)B.环丙沙星C.萘啶酸D.呋喃唑酮E.四环素可治疗支原体、衣原体肺炎的药物是
百部杀虫的功效,可用于
凉膈散的组成中含有的是( )。
已确认的政府补助需要返还的,下列情况正确的处理方法是()。
试论述经济与高等教育的关系。
根据《中华人民共和国刑法修正案(九)》,下列说法错误的是()。
从20世纪90年代“人类基因工程”计划启动之日起,美国、日本和欧洲等展开了一场激烈的基因专利争夺战。因为谁拥有专利,就意味着谁就能在国际上获得_______基因产业的“王牌”,谁就能拥有今后基因开发的庞大市场。为此,美国等少数发达国家大量地将阶段性研究成果
[*]
设z=z(z,y)由z+ez=xy2确定,则dz=________.
Thelargestanimalthateverlivedonlandorinwaterstillexists.Noteventhegiantdinosaurswereaslargeassomewhales.
最新回复
(
0
)