首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
admin
2018-08-23
80
问题
求f(x,y)=x+xy一x
2
一y
2
在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
选项
答案
这是闭区域上求最值的问题.由于函数f(x,y)=x+xy—x
2
一y
2
在闭区域D上连续,所以一定存在最大值和最小值. 首先求f(x,y)=35-+xy—x
2
一y
2
在闭区域D内部的极值: 解方程组[*]得区域D内部唯一的驻点为[*]由 g(x,y)=(f"
xy
)
2
一f"
xx
f"
yy
=一3 得f(x,y)=x+xy一x
2
一y
2
在闭区域D内部的极大值[*] 再求f(x,y)在闭区域D边界上的最大值与最小值: 这是条件极值问题,边界直线方程即为约束条件. 在x轴上约束条件为y=0(0≤x≤1),于是拉格朗日函数为 F(x,y,λ)=x+xy一x
2
一y
2
+λy, 解方程组[*]得可能的极值点[*]其函数值为[*] 在下边界的端点(0,0),(1,0)处f(0,0)=0,f(1,0)=0,所以下边界的最大值为[*]最小值为0。 同理可求出: 在上边界上的最大值为一2,最小值为一4; 在左边界上的最大值为0,最小值为一4; 在右边界上的最大值为[*]最小值为一2. 比较以上各值,可知函数f(x,y)=x+xy一x
2
一y
2
在闭区域D上的最大值为[*]最小值为一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/rPj4777K
0
考研数学二
相关试题推荐
设f(x)连续(A为常数),φ(x)=∫01f(xt)dt,求φ’(x),并讨论φ’(x)在x=0处的连续性.
设E为3阶单位矩阵.求线性方程组Ax=0的一个基础解系;
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:A+E与A—E都可逆;
设3阶行列式且M11+M12+M13=11,其中Mij是行列式D中元素aij的余子式,求a,b的值.
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2)
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
设z=esinxy,则dz=____________.
随机试题
在点火装置高压电路中串入阻尼电阻,一般为_______
下列关于辐射防护的说法,错误的是
中暑痉挛时最常见的发生肌肉痉挛部位是
与X线本质不同的是
某患者出现神志昏迷、面色晦暗、循衣摸床、撮空理线,这说明
急性蜂窝织炎中,浸润的炎细胞是
下列关于医学常识的说法,错误的是()。
下列各项中,需要计算缴纳增值税的是()。
[A]Analyzingyourowntaste.[B]Beingcautiouswhenexperimenting.[C]Findingamodeltofollow.[D]Gettingt
警官:我们的警察学院不再要求申请者在被录取之前通过一项身体检查。这样,一些患有心脏病和高血压的候选人被录取了。因此,我们可以预测未来的警察队伍会比目前的警察队伍存在更多的健康问题。下面每一项均与判断警官预言的可靠性相关,除了:
最新回复
(
0
)