首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)有二阶连续导数,且f”(x)≠0,又有 f(x+△x)=f(x)+△xf’(x+θ△x),0<θ<1. 证明:
设函数f(x)有二阶连续导数,且f”(x)≠0,又有 f(x+△x)=f(x)+△xf’(x+θ△x),0<θ<1. 证明:
admin
2022-06-04
78
问题
设函数f(x)有二阶连续导数,且f”(x)≠0,又有
f(x+△x)=f(x)+△xf’(x+θ△x),0<θ<1.
证明:
选项
答案
函数f(x)在点x处的一阶泰勒公式为 f(x+△x)=f(x)+f’(x)△x+[*]f”(x+θ
1
△x)(△x)
2
,0<θ
1
<1 与已知等式f(x+△x)=f(x)+△xf’(x+θ△x)相减,得 [*] 因为f(x)有二阶连续的导数,两边取极限,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dHR4777K
0
考研数学三
相关试题推荐
设函数z=f(x,y)(xy≠0)满足,则dz=__________.
求幂级数的收敛域及和函数.
设有级数证明此级数的和函数y(x)满足微分方程y’’—y=—l;
设A是n阶正定矩阵,证明:|E+A|>1.
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
aibi≠0,求A的全部特征值,并证明A可以对角化.
设ATA=E,证明:A的实特征值的绝对值为1.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明:方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
随机试题
那些具有生育能力而选择不生育,除了主动不生育,也可能是主观或者客观原因而被动选择不生育人群所组成的家庭被称为()
下列说法正确的是
有关巨大胎儿的相关因素有
76岁女性患者,有8年充血性心力衰竭病史,用地高辛和呋塞米有效控制了心衰的发展。近来,病人感到轻度体力活动时呼吸困难加重,体检发现窦性心动过速,下肢凹陷性水肿。所使用的治疗药物属于()
双氯芬酸钠的主要代谢途径为苯妥英钠的主要代谢途径为
引起年长儿化脓性脑膜炎最常见的致病菌是
怀孕妇女血浆中,浓度升高的有()。[江苏2011年11月三级真题]
①腮腺激素能增加肌肉、血管、结缔组织、骨骼、软骨和牙齿的活力②唾液中就含有这种极具魅力的物质——腮腺激素③尤其能强化血管的弹性,提高结缔组织的生命力④这种激素是由腮腺分泌的,许多学者认为它是“返老还童”的激素⑤永葆青春、返老还童是我们每个人梦寐以求
下列生活中的常见现象既发生了物理变化又发生了化学变化的是()。
下列关于贪污贿赂罪的说法,正确的是()。
最新回复
(
0
)