设f(x)在[a,b](a>0)上连续,在(a,b)内可导,f(a)=0,f(b)=2,f’(x)≠0,证明:存在ξ,η∈(a,b),使得

admin2022-06-04  39

问题 设f(x)在[a,b](a>0)上连续,在(a,b)内可导,f(a)=0,f(b)=2,f’(x)≠0,证明:存在ξ,η∈(a,b),使得

选项

答案因为f(x)在[a,b](a>0)上连续,且f(A)=0,f(B)=2.由介值定理得,必存在a<c<b,使f(C)=1.因为xf(x),f(x)在闭区间[a,b]上连续,开区间(a,b)内可导,且f’(x)≠0,所以xf(x),f(x)在[c,b]上满足柯西中值定理的条件,故存在ξ∈(c,b),使得 [*] 将f(C)=1,f(B)=2代入上式,得[*]=2b-c.又因为f(x)在[a,c]上满足拉格0朗日中值定理的条件,故存在η∈(a,c),使得 f(C)-f(A)=f’(η)(c-a) [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/zXR4777K
0

最新回复(0)