首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( )
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( )
admin
2019-03-14
80
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组AX=β的3个线性无关的解,k
1
,k
2
为任意常数,则AX=β的通解为( )
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
).
B、(η
2
-η
3
)/2+k
2
(η
2
-η
1
).
C、(η
2
+η
3
)/2+k
1
(η
3
-η
1
)+k
2
(η
2
-η
1
).
D、(η
2
-η
3
)/2+k
1
(η
3
-η
1
)+k
2
(η
2
-η
1
).
答案
C
解析
选项B和D都用(η
2
-η
3
)/2为特解,但是(η
2
-η
3
)/2不是原方程组解,因此选项B和D都排除.
选项A和C的区别在于导出组AX=0的基础解系上,选项A只用一个向量,而选项C用了两个:(η
3
-η
1
),(η
2
-η
1
).由于η
1
,η
2
,η
3
线性无关,可推出(η
3
-η
1
),(η
2
-η
1
)无关,并且它们都是AX=0的解.则AX=0的解集合的秩不小于2,从而排除选项A.
转载请注明原文地址:https://kaotiyun.com/show/rdj4777K
0
考研数学二
相关试题推荐
A=,正交矩阵Q使得QTAQ是对角矩阵,并且Q的第1列为(1,2,1)T.求a和Q.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α,α,…,αr线性表示,又可用β1,β2,…,βs线性表示.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
求由曲线χ2=ay与y2=aχ(a>0)所围平面图形的质心(形心)(如图3.35).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
求极限
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
设A,B是n阶矩阵,证明:AB和BA的主对角元的和相等.(方阵主对角元的和称为方阵的迹,记成trA,即
已知函数y=f(x)在其定义域内可导,它的图形如图2.3所示,则其导函数y=f’(x)的图形为
设a(x)=∫05xsint/tdt,β(x)=∫0sinx(1+t)1/tdt,则当x→0时,α(x)是β(x)的()
随机试题
在中脑上、下丘之间切断动物腩干,可出现()
防止彩色信号倒错(混叠)的方法是
癫狂的病理因素以何者为先( )。
甲银行与乙公司签订借款合同,约定甲银行借款250万元给乙公司,乙公司以一幢竣工不久的价值280万元的综合服务楼设定抵押。借款尚未到期,综合服务楼由于严重的施工质量问题而垮塌。该楼施工单位为丙建筑工程公司。因综合服务楼垮塌,乙公司的生产经营状况恶化,其债权人
财务评价是根据()计算评价指标,判别项目的财务可能性。
根据《建设工程施工专业分包合同(示范文本)》(GF—2003—0213)的规定,分包合同价款与总包合同相应部分价款之间应当()。
对某一类高层宾馆进行防火检查,查阅资料得知,该宾馆每层划分为2个防火分区,符合规范要求,下列检查结果中,不符合现行国家消防技术标准的有()。
建国初期,过渡时期的总路线和总任务是()
"Europeneedstoimporttoexport."ThatisthesloganoftheEuropeanCommission’snewstrategyforsecuringitseconomicplac
Whathappenedinthe1950s?
最新回复
(
0
)