首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
设矩阵有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
admin
2018-12-19
31
问题
设矩阵
有一个特征值是3,求y,并求可逆矩阵P,使(AP)
T
(AP)为对角矩阵。
选项
答案
因为3是A的特征值,故|3E—A|=8(3一y一1)=0,解得y=2。于是 [*] 由于A
T
=A,要(AP)
T
(AP)=P
T
A
2
P=Λ,而A
2
=[*]是对称矩阵,即要A
2
~Λ, 故可构造二次型x
T
A
2
x,再化其为标准形。由配方法,有 x
T
A
2
x=x
1
2
+x
2
2
+5x
3
2
+5x
4
2
+8x
3
x
4
=y
1
2
+y
2
2
+5y
3
2
+[*]y
4
2
, 其中y
1
=x
1
,y
2
=x
2
,y
3
=x
3
+[*]x
4
,y
4
=x
4
,即 [*] 其中 [*] 于是 (AP)
T
(AP)=P
T
A
2
P=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/sAj4777K
0
考研数学二
相关试题推荐
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2005年)设函数u(χ,y)=φ(χ+y)+φ(χ-y)+∫χ-yχ+yφ(t)dt,其中函数φ具有二阶导数,φ具有一阶导数,则必有【】
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2007年)设f(χ)是区间[0,]上的单调、可导函数,且满足其中f-1是厂的反函数,求f(χ).
(2006年)已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(χ0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于χ≤χ0的部分)及χ轴所围成的平面图形的面积.
(2013年)设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2008年)设A=,则在实数域上与A合同的矩阵为【】
(1991年)曲线y=(χ-1)(χ-2)和χ轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
已知矩阵B=相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
随机试题
环境在人的发展中的重要作用体现在()。
《组织部来了个年轻人》发表于()
按照我国残疾分类,残疾包括如下哪几种
牛产后排出恶露正常时间范围是
中华人民共和国的根本制度是()。
热拌沥青碎石的配合比设计包括()。
关于公司贷款中的流动资金贷款,下列表述正确的是()。
向火车站、码头问讯处询问火车、轮船的准确抵达时间,一般要再比预计抵达时间提前()
Whichofthefollowingactivitiesisnotcommunicativeactivityinteachingspeaking?
明朝的中央最高审判机关是()。
最新回复
(
0
)