首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
设矩阵有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
admin
2018-12-19
29
问题
设矩阵
有一个特征值是3,求y,并求可逆矩阵P,使(AP)
T
(AP)为对角矩阵。
选项
答案
因为3是A的特征值,故|3E—A|=8(3一y一1)=0,解得y=2。于是 [*] 由于A
T
=A,要(AP)
T
(AP)=P
T
A
2
P=Λ,而A
2
=[*]是对称矩阵,即要A
2
~Λ, 故可构造二次型x
T
A
2
x,再化其为标准形。由配方法,有 x
T
A
2
x=x
1
2
+x
2
2
+5x
3
2
+5x
4
2
+8x
3
x
4
=y
1
2
+y
2
2
+5y
3
2
+[*]y
4
2
, 其中y
1
=x
1
,y
2
=x
2
,y
3
=x
3
+[*]x
4
,y
4
=x
4
,即 [*] 其中 [*] 于是 (AP)
T
(AP)=P
T
A
2
P=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/sAj4777K
0
考研数学二
相关试题推荐
(2002年)设f(χ)=,求函数F(χ)=∫-1χf(t)dt的表达式.
(1994年)如图2.9所示,设曲线方程为y=χ2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
(1993年)求微分方程(χ2-1)dy+(2χy-cosχ)dχ=0满足初始条件y|χ=1=1的特解.
求y’’-2y’-ex=0满足初始条件y(0)=1,y’(0)=1的特解.
随机试题
下列除哪项外,均属于药性升降浮沉的确定依据( )
(2013年第58题)关于二尖瓣狭窄心尖部舒张期杂音听诊特点的叙述,正确的是
某患者,男性,37岁,弥漫性腹膜炎10小时,病人处于中毒性休克状态,下列哪项处理不正确
卵磷脂中含有心磷脂中含有
交割仓库不得从事的行为包括()。
()属于定性风险分析成果。
与会人员交费的计算公式正确的表述是()。
根据《企业所得税法》,企业的公益性捐赠支出,准予在计算应纳税所得额中扣除。下列关于扣除比例的说法中,正确的是()
结合材料.回答问题:材料1我们党已经走过了95年的历程,但我们要永远保持建党时中国共产党人的奋斗精神,永远保持对人民的赤子之心。一切向前走,都不能忘记走过的路;走得再远、走到再光辉的未来,也不能忘记走过的过去,不能忘记为什么出发。面向未来,面对挑战,全
Apatrolteamofsealionsanddolphinsfeaturedinalarge-scalemilitaryexercisesbeingconductedbytheU.S.anditsallies
最新回复
(
0
)