首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a为常数,讨论两曲线y=ex与y=的公共点的个数及相应的a的取值范围.
设a为常数,讨论两曲线y=ex与y=的公共点的个数及相应的a的取值范围.
admin
2022-10-09
43
问题
设a为常数,讨论两曲线y=e
x
与y=
的公共点的个数及相应的a的取值范围.
选项
答案
若a=0,则易知y=e
x
与y=0无公共点,以下设a≠0.讨论y=e
x
与y=[*]交点的个数,等同于讨论方程e
x
=[*]的根的个数,亦即等同于讨论函数 f(x)=xe
x
-a 的零点个数. f
’
(x)=(x﹢1)e
x
[*]0, 得唯一驻点x
0
=-1.当x<-1时,f
’
(x)<0;当x>-1时,f
’
(x)﹥0.所以 minf(x)=f(-1)=-e
-1
-a. 又 f(-∞)=[*]f(x)=-a, f(﹢∞)=[*]f(x)=﹢∞. ①设-e
-1
-a﹥0,即设a<-e
-1
,则minf(x)>0,f(x)无零点; ②设-e
-1
-a=0,即设a=-e
-1
,则f(x)有唯一零点x
0
=-1; ③设-e
-1
-a﹤0,即设a>-e
-1
.又分两种情形: (i)设-e
-1
﹤a﹤0,则有f(-∞)=-a﹥0,f(-1)=-e
-1
-a﹤0,f(﹢∞)>0.而在区间 (-∞,-1)内f(x)单调减少,在区间(-1,﹢∞)内f(x)单调增加,故f(x)有且仅有两个零点; (ii)设a﹥0.易知f(x)=xe
x
-a在区间(-∞,0]内无零点,而在区间(0,﹢∞)内,f(0
﹢
)=-a﹤0. f(﹢∞)=﹢∞,f
’
(x)=(x﹢1)e
x
﹥0,所以f(x)在区间(0,﹢∞)内刚好有1个零点.讨论完毕. 综上,有结论: 当a<-e
-1
或a=0时,无交点;当a=-e
-1
时,有唯一交点(切点);当-e
-1
﹤a﹤0时,有两个交点;当a>0时,在区间(-∞,0]内无交点,而在区间(0,﹢∞)内,即第一象限内有唯一交点.
解析
转载请注明原文地址:https://kaotiyun.com/show/sRf4777K
0
考研数学二
相关试题推荐
24
=________.
已知λ=12是的特征值,则a=____________.
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=_______
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
设=一siny+,且z(1,y)=siny,则z(x,y)=_______。
矩阵A=的非零特征值是________.
求极限
求极限:.
求下列极限f(χ):
随机试题
追惟一二,仿佛如昨
某男,5岁。突发高热、呕吐、惊厥,数小时后出现面色苍白、四肢厥冷、脉搏细数、血压下降至休克水平。经实验室检查诊断为暴发型流脑所致感染中毒性休克,应采取的抗休克药物为
下列关于劳动争议处理的说法,错误的是( )。
某企业当年有生产职工为200人,当地政府确定人均月计税工作标准是800元,该企业当年发放的工资总额是210万元,该企业在计算应纳税所得额时,准予扣除的职工工会经费、职工福利费、职工教育费共()。
甲、乙、丙三方合作研发一项新技术,合作开发合同中未约定该技术成果的权利归属。新技术研发成功后,乙、丙提出申请专利,甲不同意。根据《合同法》的规定,下列关于专利申请的表述中,正确的是()。
下列关于契税的陈述,正确的有()。
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD。求证:AB⊥DE;
资本主义土地私有制的特点不包括()。
在完全竞争的条件下,市场均衡意味着资源的最佳配置,而打破市场均衡的可能原因有()。
A、Returnthebikesbacktothesamepick-uppoint.B、Usethebikeforashortorlongtrip.C、Swipetheirordinarytravelcards
最新回复
(
0
)