首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2020-01-15
64
问题
α
1
,α
2
,α
3
是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
=(0,1,2,3)
T
.c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
根据非齐次线性方程组解的结构,依次求出其导出组的基础解系和自身的一个特解即可.
根据线性方程组解的性质,可知
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)
是非齐次线性方程组Ax=b导出组Ax=0的一个解.因为R(A)=3,所以Ax=0的基础解系含4-3=1个解向量,而2α
1
-(α
2
+α
3
)=(2,3,4,5)
T
≠0,故是Ax=0的一个基础解系.因此Ax=b的通解为
α
1
+c(2α
1
-α
2
-α
3
)=(1,2,3,4)
T
+f(2,3,4,5)
T
,
即(C)正确.
对于其他几个选项,(A)项中
(1,1,1,1)
T
=α
1
-(α
2
+α
3
),
(B)项中
(0,1,2,3)
T
=α
2
+α
3
,
(D)项中
(3,4,5,6)
T
=3α
1
-2(α
2
+α
3
),
都不是Ax=b的导出组的解.所以(A)、(B)、(D)均不正确.
故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/sWS4777K
0
考研数学一
相关试题推荐
当随机变量(X,Y)服从单位圆D={(x,y)|x2+y2≤1}上的均匀分布,则Y的边缘分布FY(y)与Y关于X的条件分布FY|X(y|x)()
设二维随机变量(X,Y)的联合概率密度求随机变量Z=X-2Y的概率密度fZ(z).
yOz平面上的曲线,绕z轴旋转一周与平面z=1,z=4围成一旋转体Ω,设该物体的点密度μ=r2,其中r为该点至旋转轴的距离,求该物体的质心的坐标.
直线L1:与L2:相交于一点,则a=_________.
掷一枚不均匀的硬币,设正面出现的概率为p,反面出现的概率为q=1一p,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布为______.
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2}=,P{Y=y1|X=x2}=,P{X=x1|Y=y1}=,试求:[img][/img]二维随机变量(X,Y)的联合概率分布;
设x>0时,∫x2f(x)dx=arcsinx+C,F(x)是f(x)的原函数,满足F(1)=0,则F(x)=______.
设随机变量X的概率密度为f1(x)=又随机变量Y在区间(0,X)上服从均匀分布,试求:随机变量X和Y的联合密度f(x,y);
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2.求矩阵βαT的特征值;
的通解是______.
随机试题
“运用描绘、雕塑、拓印、拼贴等手段和方法制作视觉形象的美术创作活动”是“()”学习领域内容。[江西2020]
资产评估中的投资价值是指资产()
下列选项中不影响管理道德的因素是()
Thedoghasalwaysbeenconsideredman’sbestfriend.Alwaysnotedforbeingparticularlyfaithfulinwatchingoverchildren,he
前列腺增生症早期最常见的症状是
汉译英:“船舶;车辆”,正确的翻译为()。
下面不属于市场营销活动功能的是()。
下面各句中加横线的词语如果用括号里的词来替换,有什么好处,选出说明有错的一项______。
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤1/2∫ab|f′(x)|dx(a<x<b).
WhichofthefollowinghasnothingtodowithScreenblast?
最新回复
(
0
)