首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设f(x)在[0,1]上连续,在(0,1)内可导,且满足 证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
[2001年] 设f(x)在[0,1]上连续,在(0,1)内可导,且满足 证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
admin
2019-03-30
67
问题
[2001年] 设f(x)在[0,1]上连续,在(0,1)内可导,且满足
证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ
-1
)f(ξ).
选项
答案
证一 将ξ换为x,待证等式化为 f’(x)-(1-1/x)f(x)=0, f’(x)-(x-lnx)’f(x)=0, e
-(x-lnx)
f’(x)-e
-(x-lnx)
(x-lnx)’f(x)=0, e
-(x-lnx)
f’(x)+[e
-(x-lnx)
]’f(x)=[e
-(x-lnx)
f(x)]’=0, 则应构造的辅助函数为 F(x)=e
-(x-lnx)
f(x)=xe
-x
f(x). 下用罗尔定理证明中值等式.由积分中值定理知,至少存在一点ξ
1
∈[0,1/k][*][0,1],使 [*] 即1·e
-1
f(1)=ξ
1
e
ξ
1
f(ξ
1
),亦即F(1)=F(ξ
1
).又F(x)在[ξ
1
,1]上满足罗尔定理的其他条件,故由罗尔定理知,至少存在一点ξ∈(ξ
1
,1)[*](0,1),使 F’(ξ)=0, 即 e
1-ξ
[f(ξ)-ξf(ξ)+ξf’(ξ)]=0, 亦即 f’(ξ)=(1-ξ
-1
)f(ξ). 证二 用积分法求出辅助函数.视f’(x)=(1-1/x)f(x)为f(x)所满足的齐次微分方程,由其通解公式得到 [*] 因而F(x)=xe
-x
f(x).下同解一略. 证三 由题设[*]首先想到使用积分中值定理.由该定理知,至少存在一点ξ∈[0,1/k][*][0,1],使 [*] 如果构造辅助函数F(x)=xe
1-x
f(x),则F(1)=1·e
0
f(1)=f(1),即 F(1)=f(1)=ξ
1
e
1-ξ
1
f(ξ
1
)=F(ξ
1
). 又F(x)在[ξ
1
,1]上连续,在(ξ
1
,1)内可导,于是由罗尔定理知,存在一点ξ∈(ξ
1
,1)[*](0,1),使 F’(ξ)=e
1-ξ
[f(ξ)-ξf(ξ)+ξf’(ξ)]=0, 即 f’(ξ)=(1-ξ
-1
)f(ξ), ξ∈(0,1).
解析
转载请注明原文地址:https://kaotiyun.com/show/saP4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
设函数f(x)在x=a的某邻域内有定义,且则在x=a处()
求微分方程xy’+(1-x)y=e2x(x>0)满足y(x)=1的特解.
设f(x)二阶可导,f(0)=0,令g(x)=(1)求g’(x);(2)讨论g’(x)在x=0处的连续性.
讨论函数f(x)=的连续性.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
随机试题
具有关节唇的关节是()
《产孕集》中"尺脉转急,如切绳转珠者"描述了何种脉象变化
要比较一组大学生和一组幼儿园儿童身高的变异程度时,应选择
(2013年)对于Sh型水泵,额定流量为Q0,利用公式ns=算其比转数时,流量Q的取值应为()。
职工出差的借款单,按其填制手续和内容属于()。
在计量抽样中,产品特性值X是否合格有3种判定方法,下面廉洁中正确的有()。
苏联教育家苏霍姆林斯基在《给教师的一百条建议》的第一条中,曾提出如下忠告:如果你的“本性”孤僻、沉默寡言,更多地愿意独处或与少数朋友交往,如果和人多的集体交往你头痛。如果你感到工作时独自一人或两个朋友一起比和一大批人在一起好,那就不要选择教师工作作为自己的
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出,求在任意时刻t>0,从第
Civilrightsareembodiedintheplatform.
Accordingtotheinterview,anerdcampisasummercampforchildrenwith______.
最新回复
(
0
)