首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x∈(0,1),证明: (1)(1+x)ln2(1+x)<x2; (2)。
设x∈(0,1),证明: (1)(1+x)ln2(1+x)<x2; (2)。
admin
2014-01-26
66
问题
设x∈(0,1),证明:
(1)(1+x)ln
2
(1+x)<x
2
;
(2)
。
选项
答案
(1)令ψ(x)=(1+x)ln
2
(1+x)-x
2
,则有ψ(0)=0,且 ψ’(x)=ln
2
(1+x)+2ln(1+x)-2x,ψ(0)=0. [*] x∈(0,1)→ψ"(x)<ψ"(0)=0→(x)<ψ’(0),x∈(0,1). 所以ψ’(z)<0,从而ψ(x)<0,即 (1+x)ln
2
(1+x)
2, (2)令[*],则有 [*], 由(1)知,f’(x)<0(当x∈(0,1)),于是推知在(0,1)内,f(x)单调减少.又f(x)在区间(0,1]上连续,且[*],故当x∈(0,1)时, [*], 不等式左边证毕. 又[*], 故当x∈(0,1)时, [*], 不等式右边证毕.
解析
[分析] 利用函数的单调性证明不等式.
[评注] 利用单调性证明不等式是最常用的方法之一,一般结论为f
(n)
(x)>0,x∈(a,b)→f
(n-1)
(a,b)在(a,b)内单调增加.
转载请注明原文地址:https://kaotiyun.com/show/sh34777K
0
考研数学二
相关试题推荐
(91年)曲线y=
(04年)函数f(χ)=在下列哪个区间内有界:【】
已知方程=k在区间(0,1)内有实根,确定常数k的取值范围.
(92年)设3阶矩阵B≠O,且B的每一列都是以下方程组的解:(1)求λ的值;(2)证明|B|=0.
(16年)设函数f(χ)连续,且满足∫0χf(χ-t)dt=∫0χ(χ-t)f(t)dt+e-χ-1,求f(χ).
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
(2012年)证明:一1<x<1。
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
随机试题
钻水泥塞施工,下钻接近塞面()左右后缓慢下放探灰面。
简述规则的含义及其与政策、程序的区别。
第一次工业革命时期,英美等主要资本主义国家处于()
我国婚姻家庭法的首项基本原则是()。
Thebookstorehasnotordered______textbooksforallthestudentsinthecourse.
激励机制的源头是
下列销售预测方法中,属于定量分析法的是()。
小规模纳税企业无须在“应交增值税”下设专栏,直接按照不含税销售额和规定的增值税征收率计算交纳增值税。()
英国医生普劳特首先指出有机食物可以分为三类物质,后来分别被称为糖类、脂肪和蛋白质。后来,19世纪的化学家和生物学家逐渐研究清楚这些食物的营养性能,他们发现,蛋白质是最基本而必不可少的,只要有蛋白质供应,机体便能存活。身体不能从糖类和脂肪中制造出蛋白质,因为
设f’(1)=2,极限
最新回复
(
0
)